Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024206    DOI: 10.1088/1674-1056/28/2/024206

Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal

Li Jiang(姜丽)1, Ren-Gang Wan(万仁刚)2
1 Department of Physics, Changchun University of Science and Technology, Changchun 130000, China;
2 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
Abstract  The absorption-dispersion properties of a microwave-driven five-level atom embedded in an isotropic photonic bandgap (PBG) have been studied. Due to the singular density of modes (DOM) in the isotropic PBG and the dynamically coherence induced by the coupling fields, modified reservoir-induced transparency and quantum interference-induced transparency emerge simultaneously. Their interaction leads to ultra-narrow spectral structure. As a result of closed-loop configuration, these features can be manipulated by the amplitudes and relative phase of the coherently driven fields. The position and width of PBG also have an influence on the spectra. The theoretical studies can provide us with more efficient methods to control the atomic absorption-dispersion properties, which have applications in optical switching and slow light.
Keywords:  isotropic photonic bandgap      absorption-dispersion spectra      phase and amplitude control      ultra-narrow spectral structure  
Received:  17 July 2018      Revised:  26 September 2018      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.70.Qs (Photonic bandgap materials)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447232 and 11204367).
Corresponding Authors:  Li Jiang, Ren-Gang Wan     E-mail:;

Cite this article: 

Li Jiang(姜丽), Ren-Gang Wan(万仁刚) Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal 2019 Chin. Phys. B 28 024206

[1] Agarwal G S 1974 Quantum Optics, Springer Tracts Modern Physics, Vol. 70, Höhler G ed. (Berlin: Springer)
[2] Harris S E 1997 Phys. Today 50 36
[3] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[4] Hahn K H, King D A and Harris S E 1990 Phys. Rev. Lett. 65 2777
[5] Zhou P and Swain S 1997 Phys. Rev. Lett. 78 832
[6] Wu Y, Saldana J and Zhu Y F 2003 Phys. Rev. A 67 013811
[7] Wu Y and Yang X X 2007 Phys. Rev. B 76 054425
[8] Scully M O 1991 Phys. Rev. Lett. 67 1855
[9] Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S and Scully M O 1999 Phys. Rev. Lett. 82 5229
[10] Ye C G and Zhang J 2006 Phys. Rev. A 73 023818
[11] Li J H, Yu R, Si L G, Lü X Y and Yang X X 2009 J. Phys. B: At. Mol. Opt. Phys. 42 055509
[12] Singh M R 2009 Phys. Rev. A 79 013826
[13] John S 1984 Phys. Rev. Lett. 53 2164
[14] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[15] Nusinsky I and Hardy A A 2008 J. 0pt. Soc. Am. B 25 1135
[16] Zhu S Y, Yang Y P, Chen H, Zheng H and Zubairy M S 2000 Phys. Rev. Lett. 84 2136
[17] John S and Quang T 1994 Phys. Rev. A 50 1764
[18] John S and Wang J 1990 Phys. Rev. Lett. 64 2418
[19] Zhang H Z, Tang S H and Dong P 2002 Phys. Rev. A 65 063802
[20] Paspalakis E, Kylstra N J and Knight P L 1999 Phys. Rev. A 60 R33
[21] Angelakis D G, Paspalakis E and Knight P L 2000 Phys. Rev. A 61 055802
[22] Entezar S R and Tajalli H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2959
[23] Entezar S R and Tajalli H 2007 Phys. Rev. A 75 023816
[24] Du C G, Hu Z F and Li S Q 2004 Opt. Commun. 233 139
[25] Zhou B, Du C G and Li S Q 2004 Chin. Phys. Lett. 21 856
[26] Xu X W and Liu N H 2010 Opt. Commun. 28 1032
[27] Ding C L, Li J H and Yang X X 2011 Phys. Lett. A 375 1737
[28] Ghafoor F 2011 Opt. Commun. 284 1913
[29] Ghafoor F, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 62 013811
[30] Xue Y, Wang G, Wu J H, Xu W H, Wang H H, Gao J Y and Babind S A 2004 Phys. Lett. A 324 388
[31] Wen Q B, Wang J and Zhang H Z 2004 Chin. Phys. 13 1407
[32] Li H, Sautenkov V A, Rostovtsev Y V, Welch G R, Hemmer P R and Scully M O 2009 Phys. Rev. A 80 023820
[33] Yamamoto K, Ichimura and Gemma N 1998 Phys. Rev. A 58 2460
[34] Zhang K, Zhu Y P, Jiang L and Zhang H Z 2010 Chin. Phys. B 19 054206
[35] Lukin M D, Yelin S F, Fleischhauer M and Scully M O 1999 Phys. Rev. A 60 3225
[1] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[2] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[7] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[8] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[9] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[10] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
[11] Actively tunable dual-broadband graphene-based terahertz metamaterial absorber
Dan Hu(胡丹), Tian-Hua Meng(孟田华), Hong-Yan Wang(王红燕), and Mai-Xia Fu(付麦霞). Chin. Phys. B, 2021, 30(12): 126101.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[14] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[15] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
No Suggested Reading articles found!