Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098102    DOI: 10.1088/1674-1056/ac4a6b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Transmissive 2-bit anisotropic coding metasurface

Pengtao Lai(来鹏涛)1, Zenglin Li(李增霖)1, Wei Wang(王炜)1, Jia Qu(曲嘉)2,†, Liangwei Wu(吴良威)3, Tingting Lv(吕婷婷)1,4, Bo Lv(吕博)1, Zheng Zhu(朱正)1, Yuxiang Li(李玉祥)1, Chunying Guan(关春颖)1, Huifeng Ma(马慧锋)3,5, and Jinhui Shi(史金辉)1,‡
1 Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China;
2 College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China;
3 State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China;
4 School of Electronic Science, Northeast Petroleum University, Daqing 163318, China;
5 Synergetic Innovation Center of Wireless Communication Technology, Southeast University, Nanjing 210096, China
Abstract  Coding metasurfaces have attracted tremendous interests due to unique capabilities of manipulating electromagnetic wave. However, archiving transmissive coding metasurface is still challenging. Here we propose a transmissive anisotropic coding metasurface that enables the independent control of two orthogonal polarizations. The polarization beam splitter and the orbital angular momentum (OAM) generator have been studied as typical applications of the anisotropic 2-bit coding metasurface. The simulated far field patterns illustrate that the x and y polarized electromagnetic waves are deflected into two different directions, respectively. The anisotropic coding metasurface has been experimentally verified to realize an OAM beam with l = 2 of right-handed polarized wave, resulting from both contributions from linear-to-circular polarization conversion and the phase profile modulation. This work is beneficial to enrich the polarization manipulation field and develop transmissive coding metasurfaces.
Keywords:  transmissive coding metasurfaces      polarization control      orbital angular momentum  
Received:  09 September 2021      Revised:  12 January 2022      Accepted manuscript online:  12 January 2022
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1931121), the Natural Science Foundation of Heilongjiang Province in China (Grant No. ZD2020F002), 111 Project to the Harbin Engineering University (Grant No. B13015), the Fundamental Research Funds for the Central Universities (Grant Nos. 3072021CFT2501 and 3072021CF2508), and the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province, China (Grant No. LBH-Q9097).
Corresponding Authors:  Jia Qu, Jinhui Shi     E-mail:  qujia@hrbeu.edu.cn;shijinhui@hrbeu.edu.cn

Cite this article: 

Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉) Transmissive 2-bit anisotropic coding metasurface 2022 Chin. Phys. B 31 098102

[1] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[2] Sun S, He Q, Xiao S, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
[3] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S and Tsai D P 2018 Nat. Nanotechnol. 13 227
[4] Khorasaninejad M and Capasso F 2017 Science 358 eaam8100
[5] Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S and Tsai D P 2017 Nat. Commun. 8 187
[6] Rubio A D, Asadchy V S, Elsakka A and Tretyakov S A 2017 Sci. Adv. 3 1602714
[7] Lin D, Fan P, Hasman E and Brongersma M L 2014 Science 345 298
[8] Huang Y W, Chen W T, Tsai W Y, Wu P C, Wang C M, Sun G and Tsai D P 2015 Nano Lett. 15 3122
[9] Wang Q, Plum E, Yang Q L, Zhang X Q, Xu Q, Xu Y H, Han J G and Zhang W L 2018 Light Sci. Appl. 7 25
[10] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T and Zhang S 2015 Nat. Nanotechnol. 10 308
[11] Frese D, Wei Q S, Wang Y T, Huang L L and Zentgraf T 2019 Nano Lett. 19 3976
[12] Zhao R Z, Huang L L, Tang C C, Li J J, Li X W, Wang Y T and Zentgraf T 2018 Adv. Opt. Mater. 6 1800490
[13] Zhou H Q, Sain B, Wang Y T, Schlickriede C, Zhao R Z, Zhang X, Wei Q S, Li X W, Huang L L and Zentgraf T 2020 ACS Nano 14 5553
[14] Wu J W, Wang Z X, Zhang L, Cheng Q, Liu S, Zhang S, Song J M and Cui T J 2020 IEEE Transactions on Antennas and Propagation
[15] Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q and Tsai D P 2014 Nano Lett. 14 225
[16] Min C, Liu J, Lei T, Si G, Xie Z, Lin J, Du L and Yuan X 2016 Laser Photonics Rev. 10 978
[17] Meng X, Wu J, Wu Z, Huang L, Li X, Qu T and Wu Z 2019 Appl. Phys. Lett. 114 093504
[18] Man Z, Du L, Min C, Zhang Y, Zhang C, Zhu S, Urbach H P and Yuan X C 2014 Appl. Phys. Lett. 105 011110
[19] Han Y and Li G 2005 Opt. Express 13 7527
[20] Arbabi A, Horie Y, Bagheri M and Faraon A 2015 Nat. Nanotechnol. 10 937
[21] Mueller J P B, Rubin N A, Devlin R C, Groever B and Capasso F 2017 Phys. Rev. Lett. 118 113901
[22] Cui T J, Qi M Q, Wan X, Zhao J and Cheng Q 2014 Light Sci. Appl. 3 e218
[23] Giovampaola C D and Engheta N 2014 Nat. Mater. 13 1115
[24] Li L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M, Qiu C W and Zhang S 2017 Nat. Commun. 8 197
[25] Wu R Y, Shi C B, Liu S, Wu W and Cui T J 2018 Adv. Opt. Mater. 6 1701236
[26] Zhang X, Jiang W, Jiang H, Wang Q, Tian H, Bai L, Luo Z, Sun S, Luo Y, Qiu C W and Cui T J 2020 Nat. Electron. 3 165
[27] Zhang L, Liu S, Li L and Cui T J 2017 ACS Appl. Mater. Interfaces 9 36447
[28] Zhang L, Wu R Y, Bai G D, Wu H T, Ma Q, Chen X Q and Cui T J 2018 Adv. Funct. Mater. 28 1802205
[29] Shao L, Premaratne M and Zhu W 2019 IEEE Access 7 45716
[30] Liang L, Qi M, Yang J, Shen X, Zhai J, Xu W, Jin B, Liu W, Feng Y, Zhang C, Lu H, Chen H T, Kang L, Xu W, Chen J, Cui T J, Wu P and Liu S 2015 Adv. Opt. Mater. 3 1374
[31] Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W and Cheng Q 2016 Light Sci. Appl. 5 e16076
[32] Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F, Wen Q Y, Liang L J, Jin B B, Liu W W, Zhou L, Yao J Q, Wu P H and Cui T J 2015 Light Sci. Appl. 4 e324
[33] Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M, Han J G, Zhang W L, Zhou X Y and Cheng Q 2016 Adv. Sci. 3 1600156
[34] Liu S, Zhang H C, Zhang L, Yang Q L, Xu Q, Gu J, Yang Y, Zhou X Y, Han J, Cheng Q, Zhang W and Cui T J 2017 ACS Appl. Mater. Interfaces 9 21503
[35] Xie B, Tang K, Cheng H, Liu Z, Chen S and Tian J 2017 Adv. Mater. 29 1603507
[36] Wang Z, Zhang Q, Zhang K and Hu G 2016 Adv. Mater. 28 9857
[37] Zhang X G, Yu Q, Jiang W X, Sun Y L, Bai L, Wang Q, Qiu C W and Cui T J 2020 Adv. Sci. 7 1903382
[38] Zhang L, Chen X Q, Liu S, Zhang Q, Zhao J, Dai J Y, Bai G D, Wan X, Cheng Q, Castaldi G, Galdi V and Cui T J 2018 Nat. Commun. 9 4334
[39] Dai J Y, Zhao J, Cheng Q and Cui T J 2018 Light Sci. Appl. 7 90
[40] Cui T J, Liu S, Bai G D and Ma Q 2019 Research 2019 2584509
[41] Dai J Y, Tang W K, Zhao J, Li X, Cheng Q, Ke J C, Chen M Z, Jin S and Cui T J 2019 Adv. Mater. Technol. 4 1900044
[42] Wan X, Zhang Q, Chen T Y, Zhang L, Xu W, Huang H, Xiao C K, Xiao Q and Cui T J 2019 Light:Sci. Appl. 8 60
[43] Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alú A and Cui T J 2019 Nat. Sci. Rev. 6 231
[44] Shuang Y, Zhao H, Ji W, Cui T J and Li L 2020 IEEE Journal on Emerging and Selected Topics in Circuits and Systems 10 29
[45] Zhang L, Chen M Z, Tang W, Dai J Y, Miao L, Zhou X Y, Jin S, Cheng Q and Cui T J 2021 Nat. Electron. 4 218
[46] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[47] Turnbull G A, Roberson D A, Smith G M, Allen L and Padgett M J 1996 Opt. Commun. 127 183
[48] Oemrawsingh S, Houwelingen J van, Eliel E, Woerdman J P, Verstegen E, Kloosterboer J and Hooft G W 2004 Appl. Optics 43 688
[49] Sueda K, Miyaji G, Miyanaga N and Nakatsuka M 2004 Opt. Express 12 3548
[50] Mahmouli F E and Walker S D 2013 IEEE Wirel. Commun. Lett. 2 223
[51] Zhang D, Cao X, Yang H, Gao J and Zhu X 2018 Opt. Express 26 24804
[52] Liu R, Feng T, Yi J, Burokur S N, Mao C, Zhang H and Werner D H 2018 Opt. Express 26 20331
[53] Tamburini F, Mari E, Thide B, Barbieri C and Romanato F 2011 Appl. Phys. Lett. 99 204102
[54] Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H and Khamitova R 2007 Phys. Rev. Lett. 99 087701
[55] Tennant A and Allen B 2012 Electron. Lett. 48 1365
[56] Yu S, Li L, Shi G, Zhu C, Zhou X and Shi Y 2016 Appl. Phys. Lett. 108 121903
[57] Luo W, Sun S, Xu H, He Q and Zhou L 2017 Phys. Rev. Appl. 7 044033
[58] Genevet P, Yu N, Aieta F, Lin J, Kats M A, Blanchard R, Scully M O, Gaburro Z and Capasso F 2012 Appl. Phys. Lett. 100 013101
[59] Yu S, Li L, Shi G, Zhu C and Shi Y 2016 Appl. Phys. Lett. 108 241901
[60] Zhang K, Yuan Y, Zhang D, Ding X, Ratni B, Burokur S N, Lu M, Tang K and Wu Q 2018 Opt. Express 26 1351
[61] Han J, Li L, Yi H and Shi Y 2018 Opt. Mater. Express 8 3470
[62] Nazemosadat E, Mazur M, Kruk S, Kravchenko I, Schroder J, Andrekson P A, Karlsson M and Kivshar Y 2019 Adv. Opt. Mater. 7 1801679
[63] Principe M, Consales M, Micco A, Crescitelli A, Castaldi G, Esposito E, La Ferrara V, Cutolo A, Galdi V and Cusano A 2017 Light. Sci. Appl. 6 e16226
[64] Flannery J, Al Maruf R, Yoon T and Bajcsy M 2018 ACS Photon. 5 337
[65] Li J, Liu C, Wu T, Liu Y, Wang Y, Yu Z, Ye H and Yu L 2019 Nanoscale Res. Lett. 14 34
[66] Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q and Tsai D P 2014 Nano Lett. 14 225
[67] Wu R Y, Bao L, Wu L W, Wang Z X, Ma Q, Wu J W, Bai G D, Galdi V and Cui T J 2020 Adv. Opt. Mater. 8 1902126
[68] You B, Dong M, Zhou J and Xu H 2019 Progress In Electromagnetics Research 165 13
[69] Alibakhshikenari M, Virdee B S and Limiti E 2017 Radio Science 52 1510
[70] Sabah C 2010 IEEE Microwave Symposium 1 303
[71] Allen K W, Dykes D J P, Reid D R and Lee R T 2020 Progress In Electromagnetics Research 167 19
[72] Xie P, Wang G M, Li H P, Wang Y M and Zong B 2020 Progress In Electromagnetics Research 169 103
[73] Chowdhury R and Chaudhary R K 2020 Progress In Electromagnetics Research 167 95
[74] Esmaeili M and Laurin J J 2020 Progress In Electromagnetics Research 168 61
[75] Pfeiffer C and Grbic A 2013 Appl. Phys. Lett. 102 231116
[76] Li S and Li J 2019 Chin. Phys. B 28 094210
[77] Qi Y, Zhang B, Ding J, Zhang T, Wang X and Yi Z 2021 Chin. Phys. B 30 024211
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[5] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[6] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[7] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[8] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[9] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[10] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[11] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[12] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[13] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[14] Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media
Jia-Wei Liu(刘佳伟), Hai-Ying Li(李海英), Wei Ding(丁炜), Lu Bai(白璐), Zhen-Sen Wu(吴振森), Zheng-Jun Li(李正军). Chin. Phys. B, 2019, 28(9): 094214.
[15] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
No Suggested Reading articles found!