Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 074702    DOI: 10.1088/1674-1056/ac4bd0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of single synthetic jet on turbulent boundary layer

Jin-Hao Zhang(张津浩)1, Biao-Hui Li(李彪辉)1, Yu-Fei Wang(王宇飞)1, and Nan Jiang(姜楠)1,2,†
1 Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China;
2 Key Laboratory of Modern Engineering Mechanics, Tianjin 300350, China
Abstract  The turbulent boundary layer (TBL) is actively controlled by the synthetic jet generated from a circular hole. According to the datasets of velocity fields acquired by a time-resolved particle image velocimetry (TR-PIV) system, the average drag reduction rate of 6.2% in the downstream direction of the hole is obtained with control. The results of phase averaging show that the synthetic jet generates one vortex pair each period and the consequent vortex evolves into hairpin vortex in the environment with free-stream, while the reverse vortex decays rapidly. From the statistical average, it can be found that a low-speed streak is generated downstream. Induced by the two vortex legs, the fluid under them converges to the middle. The drag reduction effect produced by the synthetic jet is local, and it reaches a maximum value at x+=400, where the drag reduction rate reaches about 12.2%. After the extraction of coherent structure from the spatial two-point correlation analysis, it can be seen that the synthetic jet suppresses the streamwise scale and wall-normal scale of the large scale coherent structure, and slightly weakens the spanwise motion to achieve the effect of drag reduction.
Keywords:  turbulent boundary layer      synthetic jet      hairpin vortex      drag reduction  
Received:  09 December 2021      Revised:  13 January 2022      Accepted manuscript online:  17 January 2022
PACS:  47.85.lb (Drag reduction)  
  47.85.ld (Boundary layer control)  
  47.27.nb (Boundary layer turbulence ?)  
  47.27.De (Coherent structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11732010, 11972251, 11872272, 11902218, and 12172242) and the National Key Research and Development Program of the Ministry of Science and Technology, China (Grant No. 2018YFC0705300).
Corresponding Authors:  Nan Jiang     E-mail:  nanj@tju.edu.cn

Cite this article: 

Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠) Effects of single synthetic jet on turbulent boundary layer 2022 Chin. Phys. B 31 074702

[1] Deng B Q and Xu C X 2012 J. Fluids Mech. 710 234
[2] Jacobson S A and Reynolds W C 1998 J. Fluids Mech. 360 179
[3] Kim J 2003 J. Fluids Mech. 15 1093
[4] Jiang D W, Zhang H, Fan B C and Wang A H 2019 Chin. Phys. B 28 054701
[5] Jiang D W, Zhang H, Fan B C, Zhao Z J, Gui M Y and Chen Z H 2019 Ocean Eng. 176 74
[6] Min T, Yoo J Y, Choi H and Joseph D D 2003 J. Fluids Mech. 486 213
[7] Min T and Kim J 2004 Phys. Fluids 16 L55
[8] Li S, Jiang N, Yang S Q, Huang Y X and Wu Y H 2018 Chin. Phys. B 27 10
[9] Li L C, Liu B, Hao H L, Li L Y and Zeng Z X 2020 Phys. Fluids 32 084103
[10] Park J and Choi H 1999 Phys. Fluids 11 3095
[11] Kametani Y and Fukagata K 2011 J. Fluids Mech. 681 154
[12] Keirsbulck L, Labraga L and Haddad M 2006 Exp. Fluids 40 654
[13] Bai H L, Zhou Y, Zhang W G, Xu S J, Wang Y and Antonia R A 2014 J. Fluids Mech. 750 316
[14] Smith B L and Glezer A 1998 Phys. Fluids 10 2281
[15] Park Y S, Park S H and Sung H J 2003 Exp. Fluids 34 697
[16] Lasagna D, Orazi M and Iuso G 2014 Fluid Dyn. Res. 46 015501
[17] Berk T, Hutchins N, Marusic I and Ganapathisubramani B 2018 J. Fluids Mech. 856 531
[18] Berk T, Gomit G and Ganapathisubramani B 2016 J. Fluids Mech. 804 467
[19] Iuso G and Cicca G M 2007 J. Turbul. 8 11
[20] Chaudhry I A and Zhong S 2014 J. Vis. 17 101
[21] Kim H T, Kline S J and Reynolds W C 1971 J. Fluids Mech. 50 133
[22] Acarlar M S and Smith C R 1987 J. Fluids Mech. 175 43
[23] Acarlar M S and Smith C R 1987 J. Fluids Mech. 175 1
[24] Tang Z Q and Jiang N 2012 Sci. China-Phys. Mech. 55 118
[25] Suponitsky V, Cohen J and Bar-yoseph P Z 2005 J. Fluids Mech. 535 65
[26] Westerweel J, Geelhoed P F and Lindken R 2004 Exp. Fluids 37 375
[27] Shen J Q, Pan C and Wang J J 2014 Sci. China-Phys. Mech. 57 1353
[28] Kendall A and Koochesfahani M 2008 Exp. Fluids 44 773
[29] Schlatter P and Orlu R 2010 J. Fluids Mech. 659 116
[30] Sano M and Hirayama N 1985 Bull JSME 28 807
[31] Berk T and Ganapathisubramani B 2019 J. Fluids Mech. 870 651
[32] Jabbal M and Zhong S 2008 Int. J. Heat Fluid Flow 29 119
[33] Lardeau S and Leschziner M A 2011 J. Fluids Mech. 683 172
[34] Rathnasingham R and Breuer K S 2003 J. Fluids Mech. 495 209
[35] Lu L S, Li D, Gao Z H, Cao Z, Bai Y and Zheng J 2020 Acta Mech. Sin. 524 57
[36] Head M R and Bandyopadhyay P 1981 J. Fluids Mech. 107 297
[37] Robinson S K 1991 J. Fluids Mech. 23 601
[38] Ganapathisubramani B, Hutchins N, Hambleton W T, Longmire E K and Marusic I 2005 J. Fluids Mech. 524 57
[39] Volino R J, Schultz M P and Flack K A 2009 J. Fluids Mech. 635 75
[1] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[2] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(2): 024702.
[3] Influence of uniform momentum zones on frictional drag within the turbulent boundary layer
Kangjun Wang(王康俊) and Nan Jiang(姜楠). Chin. Phys. B, 2021, 30(3): 034703.
[4] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[5] A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel
Jian Li(李健), Gang Dong(董刚), Hui Zhang(张辉), Zhengshou Chen(陈正寿), Zhaode Zhang(张兆德). Chin. Phys. B, 2018, 27(8): 084701.
[6] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
Jian-Xia Bai(白建侠), Nan Jiang(姜楠), Xiao-Bo Zheng(郑小波), Zhan-Qi Tang(唐湛琪), Kang-Jun Wang(王康俊), Xiao-Tong Cui(崔晓通). Chin. Phys. B, 2018, 27(7): 074701.
[7] Drag reduction characteristics of heated spheres falling into water
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(12): 124703.
[8] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[9] Experimental investigation on underwater drag reduction using partial cavitation
Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛). Chin. Phys. B, 2017, 26(5): 054701.
[10] Influence of air pressure on the performance of plasma synthetic jet actuator
Yang Li(李洋), Min Jia(贾敏), Yun Wu(吴云), Ying-hong Li(李应红), Hao-hua Zong(宗豪华), Hui-min Song(宋慧敏), Hua Liang(梁华). Chin. Phys. B, 2016, 25(9): 095205.
[11] Predetermined control of turbulent boundary layer with a piezoelectric oscillator
Xiao-Bo Zheng(郑小波), Nan Jiang(姜楠), Hao Zhang(张浩). Chin. Phys. B, 2016, 25(1): 014703.
[12] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波). Chin. Phys. B, 2015, 24(8): 084401.
[13] A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids
Li Feng-Chen (李凤臣), Wang Lu (王璐), Cai Wei-Hua (蔡伟华). Chin. Phys. B, 2015, 24(7): 074701.
[14] Convection and correlation of coherent structure in turbulent boundary layer using tomographic particle image velocimetry
Wang Wei (王维), Guan Xin-Lei (管新蕾), Jiang Nan (姜楠). Chin. Phys. B, 2014, 23(10): 104703.
[15] Universal form of the power spectrum of the aero-optical aberration caused by the supersonic turbulent boundary layer
Gao Qiong (高穹), Yi Shi-He (易仕和), Jiang Zong-Fu (姜宗福). Chin. Phys. B, 2014, 23(10): 104201.
No Suggested Reading articles found!