Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034702    DOI: 10.1088/1674-1056/abd466
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Flow separation control over an airfoil using continuous alternating current plasma actuator

Jian-Guo Zheng(郑建国)†
1 School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  The flow separation control over an NACA 0015 airfoil using continuous alternating current (AC) dielectric barrier discharge (DBD) plasma actuator is investigated experimentally and numerically. This work is intended to report some observations made from our experiment, to which little attention is paid in the previous studies, but which is thought to be important to the understanding of control of complex flow separation with AC DBD. To this end, the response of separated flow to AC plasma actuation is visualized through the time-resolved particle image velocimetry (PIV) measurement, whereas numerical simulation is carried out to complement the experiment. The flow control process at chord-based Reynolds number (Re) of 3.31 × 105 is investigated. It is found that the response of external flow to plasma forcing is delayed for up to tens of milliseconds and the delay time increases with angle of attack increasing. Also observed is that at the intermediate angle of attack near stall, the forced flow features a well re-organized flow pattern. However, for airfoil at high post-stall angle of attack, the already well suppressed flow field can recover to the massively separated flow state and then reattach to airfoil surface with the flow pattern fluctuating between the two states in an irregular manner. This is contrary to one's first thought that the forced flow at any angles of attack will become well organized and regular, and reflects the complexity of flow separation control.
Keywords:  dielectric barrier discharge plasma actuator      alternating current plasma discharge      flow separation      flow control      delayed response  
Received:  24 July 2020      Revised:  14 October 2020      Accepted manuscript online:  17 December 2020
PACS:  47.32.Ff (Separated flows)  
  47.32.C- (Vortex dynamics)  
  47.85.L- (Flow control)  
  72.30.+q (High-frequency effects; plasma effects)  
Corresponding Authors:  Corresponding author. E-mail: zhengjg@hust.edu.cn   

Cite this article: 

Jian-Guo Zheng(郑建国) Flow separation control over an airfoil using continuous alternating current plasma actuator 2021 Chin. Phys. B 30 034702

1 Adamovich I, Baalrud S D, Bogaerts A, et al. 2017 J. Phys. D: Appl. Phys. 50 323001
2 Moreau E 2007 J. Phys. D: Appl. Phys. 40 605
3 Corke T, Enloe C and Wilkinson S P 2010 Ann. Rev. Fluid Mech. 42 505
4 Roth J R 2003 Phys. Plasma 10 2117
5 Forte M, Jolibois J, Pons J, Moreau E, Touchard G and Cazalens M 2007 Exp. Fluids 43 917
6 Corke T, Post M and Orlov D 2009 Exp. Fluids 46 1
7 Sosa R, Artana G, Moreau E and Touchard G 2007 Exp. Fluids 42 143
8 Jolibois J, Forte M and Moreau E 2008 J. Electrostat. 66 496
9 Sekimoto S, Nonomura T and Fujii K 2017 AIAA J. 55 1385
10 Jukes T N, Segawa T and Furutani H 2013 AIAA J. 51 452
11 Benard N, Jolibois J and Moreau E 2009 J. Electrostat. 67 133
12 Benard N and Moreau E 2011 Flow, Turbulence and Combustion 87 1
13 Gaitonde D V, Visbal M R and Roy S 2005 AIAA paper 5302
14 Sato M, Aono H, Yakeno A, Nonomura T, Fujii K, Okada K and Asada K 2015 AIAA J. 53 2544
15 Sato M, Nonomura T, Okada K, Asada K, Aono H, Yakeno A, Abe Y and Fujii K 2015 Phys. Fluids 27 117101
16 Moreau E, Debien A, Breux J M and Benard N 2016 J. Electrostat. 83 78
17 Zheng B R, Xue M and Ge C 2020 Chin. Phys. B 29 064703
18 Kelley C L, Bowles P O, Cooney J, He C, Corke T C, Osborne B A, Silkey J S,Zehnle J 2014 AIAA J. 52 1871
19 Chen K and Liang H 2016 Chin. Phys. B 25 024703
20 Su Z, Li J, Liang H, et al.2019 Chin. Phys. B 27 105205
21 Zhang X, Cui Y D, Tay C M J and Khoo B C 2020 Plasma Sources Sci. Technol. 29 015017
22 Zheng J G, Cui Y D, Zhao Z J, Li J and Khoo B C 2018 AIAA J. 56 2220
23 Zheng J G, Cui Y D, Zhao Z J, Li J and Khoo B C 2016 Phys. Rev. Fluids 1 073501
24 Shyy W, Jayaraman B and Andersson A 2002 J. Appl. Phys. 92 6434
25 Marco D and Li J M 2011 AIAA paper 954
[1] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[2] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[3] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[4] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[5] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[6] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[7] Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2019, 28(2): 024701.
[8] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[9] Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator
Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博). Chin. Phys. B, 2017, 26(8): 084703.
[10] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[11] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[12] Flow control of micro-ramps on supersonic forward-facing step flow
Qing-Hu Zhang(张庆虎), Tao Zhu(朱涛), Shihe Yi(易仕和), Anping Wu(吴岸平). Chin. Phys. B, 2016, 25(5): 054701.
[13] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[14] Shockwave-boundary layer interaction control by plasma aerodynamic actuation:An experimental investigation
Sun Quan (孙权), Cui Wei (崔巍), Li Ying-Hong (李应红), Cheng Bang-Qin (程邦勤), Jin Di (金迪), Li Jun (李军). Chin. Phys. B, 2014, 23(7): 075210.
[15] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) . Chin. Phys. B, 2012, 21(4): 045202.
No Suggested Reading articles found!