Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024702    DOI: 10.1088/1674-1056/ac0da6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet

Biao-Hui Li(李彪辉)1, Kang-Jun Wang(王康俊)1, Yu-Fei Wang(王宇飞)1, and Nan Jiang(姜楠)1,2,†
1 Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China;
2 Key Laboratory of Modern Engineering Mechanics, Tianjin 300350, China
Abstract  This work investigates the active control of a fully developed turbulent boundary layer by a submerged synthetic jet actuator. The impacts of the control are explored by measuring the streamwise velocities using particle image velocimetry, and reduction of the skin-friction drag is observed in a certain range downstream of the orifice. The coherent structure is defined and extracted using a spatial two-point correlation function, and it is found that the synthetic jet can efficiently reduce the streamwise scale of the coherent structure. Proper orthogonal decomposition analysis reveals that large-scale turbulent kinetic energy is significantly attenuated with the introduction of a synthetic jet. The conditional averaging results show that the induction effect of the prograde vortex on the low-speed fluid in a large-scale fluctuation velocity field is deadened, thereby suppressing the bursting process near the wall.
Keywords:  synthetic jet      active control      turbulent boundary layer      drag reduction  
Received:  27 April 2021      Revised:  18 June 2021      Accepted manuscript online:  23 June 2021
PACS:  47.85.lb (Drag reduction)  
  47.85.ld (Boundary layer control)  
  47.27.nb (Boundary layer turbulence ?)  
  47.27.De (Coherent structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11732010, 11972251, 11872272, 11902218, and 11802195) and the National Key Research and Development Program of China, on ‘Green Buildings and Building Industrialization’ (Grant No. 2018YFC0705300).
Corresponding Authors:  Nan Jiang     E-mail:  nanj@tju.edu.cn

Cite this article: 

Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠) Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet 2022 Chin. Phys. B 31 024702

[1] Kim J 2003 Phys. Fluids 15 1093
[2] Corke T C and Thomas F O 2018 AIAA J. 56 3835
[3] Wang X L, Di Q F, Zhang R L, Gu C Y and Gong W 2012 Acta Phys. Sin. 61 146801 (in Chinese)
[4] Wang B, Wang J, Chen D, Sun N and Wang T 2017 Chin. Phys. B 26 054701
[5] Cui G, Pan C, Wu D, Ye Q and Wang J 2019 Chin. J. Aeronaut. 32 2433
[6] Li S, Jiang N and Yang S Q 2019 Acta Phys. Sin. 68 074702 (in Chinese)
[7] Zhou Y and Bai H 2011 Sci. China-Phys. Mech. Astron. 54 1289
[8] Han Y, Zhang H, Fan B C, Li J, Jiang D W and Zhao Z J 2017 Chin. Phys. B 26 084704
[9] Jiang D W, Zhang H, Fan B C and Wang A H 2019 Chin. Phys. B 28 054701
[10] Zhang L, Shan X and Xie T 2020 IEEE Access 8 7039
[11] Kametani Y, Fukagata K, Örlü R and Schlatter P 2015 Int. J. Heat Fluid Flow 55 132
[12] Bai H L, Zhou Y, Zhang W G, Xu S J, Wang Y and Antonia R A 2014 J. Fluid Mech. 750 316
[13] Lasagna D, Orazi M and Iuso G 2014 Fluid Dyn. Res. 46 015501
[14] Chung Y M, Sung H J and Krogstad P A 2002 AIAA J. 40 1529
[15] Park Y S, Park S H and Sung H J 2003 Exp. Fluids 34 697
[16] Glezer A and Amitay M 2003 Annu. Rev. Fluid Mech. 34 503
[17] Murugan T, Deyashi M, Dey S, Rana S C and Chatterjee P K 2016 Def. Sci. J. 66 489
[18] Jabbal M and Zhong S 2008 Int. J. Heat Fluid Flow 29 119
[19] Chaudhry I A and Zhong S 2014 J. Visualization 17 101
[20] Abbas A, Bugeda G, Ferrer E, Fu S, Periaux J, Pons-Prats J, Valero E and Zheng Y 2017 Sci. China:Technol. Sci. 60 1281
[21] Guo H, Huang Q M, Liu P Q and Qu Q L 2015 Fluid Dyn. Res. 47 045501
[22] Ye Z, Jiang Y, Zhang Y, Zou J and Zheng Y 2019 Int. J. Heat Technol. 37 893
[23] Berk T, Hutchins N, Marusic I and Ganapathisubramani B 2018 J. Fluid Mech. 856 531
[24] Cannata M, Cafiero G and Iuso G 2020 AIAA J. 58 2042
[25] Westerweel J, Geelhoed P F and Lindken R 2004 Exp. Fluids 37 375
[26] Kähler C J, Scharnowski S and Cierpka C 2012 Exp. Fluids 52 1629
[27] Shen J, Pan C and Wang J 2014 Sci. China-Phys. Mech. Astron. 57 1352
[28] Smith B L and Smith A 1998 Phys. Fluids 10 2281
[29] Lu L, Li D, Gao Z, Cao Z, Bai Y and Zheng J 2020 Acta Mech. Sin. 36 1171
[30] Cui X, Jiang N, Zheng X and Tang Z 2019 Acta Mech. Sin. 36 12
[31] Tian H, Zhang J, Jiang N and Yao Z 2015 Exp. Therm. Fluid Sci. 69 27
[32] Bai J X, Jiang N, Zheng X B, Tang Z Q, Wang K J and Cui X T 2018 Chin. Phys. B 27 074701
[33] Park S H, Lee I and Sung H J 2001 Exp. Fluids 31 384
[34] Ganapathisubramani B, Hutchins N, Hambleton W T, Longmire E K and Marusic I 2005 J. Fluid Mech. 524 57
[35] Hong J, Katz J and Schultz M P 2011 J. Fluid Mech. 667 1
[36] Volino R J, Schultz M P and Flack K A 2007 J. Fluid Mech. 592 263
[37] Geers L F G, Tummers M J and Hanjalić K 2005 Phys. Fluids 17 055105
[38] Kostas J, Soria J and Chong M S 2005 Exp. Fluids 38 146
[39] Wu Y and Christensen K T 2010 J. Fluid Mech. 655 380
[40] Zhou J, Adrian R J, Balachandar S and Kendall T M 1999 J. Fluid Mech. 387 353
[41] Adrian R, Meinhart C and Tomkins C 2000 J. Fluid Mech. 422 1
[42] Fukagata K, Iwamoto K and Kasagi N 2002 Phys. Fluids 14 L73
[43] Yang S Q and Jiang N 2012 Sci. China:Phys. Mech. Astron. 55 1863
[1] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[2] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[3] Influence of uniform momentum zones on frictional drag within the turbulent boundary layer
Kangjun Wang(王康俊) and Nan Jiang(姜楠). Chin. Phys. B, 2021, 30(3): 034703.
[4] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[5] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
Jian-Xia Bai(白建侠), Nan Jiang(姜楠), Xiao-Bo Zheng(郑小波), Zhan-Qi Tang(唐湛琪), Kang-Jun Wang(王康俊), Xiao-Tong Cui(崔晓通). Chin. Phys. B, 2018, 27(7): 074701.
[6] Drag reduction characteristics of heated spheres falling into water
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(12): 124703.
[7] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[8] Experimental investigation on underwater drag reduction using partial cavitation
Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛). Chin. Phys. B, 2017, 26(5): 054701.
[9] Influence of air pressure on the performance of plasma synthetic jet actuator
Yang Li(李洋), Min Jia(贾敏), Yun Wu(吴云), Ying-hong Li(李应红), Hao-hua Zong(宗豪华), Hui-min Song(宋慧敏), Hua Liang(梁华). Chin. Phys. B, 2016, 25(9): 095205.
[10] Predetermined control of turbulent boundary layer with a piezoelectric oscillator
Xiao-Bo Zheng(郑小波), Nan Jiang(姜楠), Hao Zhang(张浩). Chin. Phys. B, 2016, 25(1): 014703.
[11] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波). Chin. Phys. B, 2015, 24(8): 084401.
[12] A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids
Li Feng-Chen (李凤臣), Wang Lu (王璐), Cai Wei-Hua (蔡伟华). Chin. Phys. B, 2015, 24(7): 074701.
[13] Universal form of the power spectrum of the aero-optical aberration caused by the supersonic turbulent boundary layer
Gao Qiong (高穹), Yi Shi-He (易仕和), Jiang Zong-Fu (姜宗福). Chin. Phys. B, 2014, 23(10): 104201.
[14] Convection and correlation of coherent structure in turbulent boundary layer using tomographic particle image velocimetry
Wang Wei (王维), Guan Xin-Lei (管新蕾), Jiang Nan (姜楠). Chin. Phys. B, 2014, 23(10): 104703.
[15] Temporal evolution of optical path difference of a supersonic turbulent boundary layer
Gao Qiong (高穹), Yi Shi-He (易仕和), Jiang Zong-Fu (姜宗福), He Lin (何霖), Xie Wen-Ke (谢文科). Chin. Phys. B, 2013, 22(1): 014202.
No Suggested Reading articles found!