CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction |
Ruijie Wang(王瑞洁)1,†, Qilong Cui(崔其龙)1,†, Wen Zhu(朱文)1,2,†, Yijie Niu(牛艺杰)3, Zhanfeng Liu(刘站锋)1, Lei Zhang(张雷)4, Xiaojun Wu(武晓君)3, Shuangming Chen(陈双明)1,‡, and Li Song(宋礼)1 |
1 National Synchrotron Radiation Laboratory, University of Science and Technology of China(USTC), Hefei 230029, China; 2 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 3 Department of Materials Sciences and Engineering, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei 230026, China; 4 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China |
|
|
Abstract Transition-metal oxyhalides $MOX$ ($M = {\rm Fe}$, Cr, V; $O ={\rm oxygen}$, $X= {\rm F}$, Cl, Br, I), an emerging type of two-dimensional (2D) van der Waals materials, have been both theoretically and experimentally demonstrated to possess unique electronic and magnetic properties. However, the intrinsic in-plane anisotropic properties of 2D VOCl still lacks in-depth research, especially optical anisotropy. Herein, a systematic Raman spectroscopic study is performed on VOCl single-crystal with different incident laser polarization at various temperatures. The polarized-dependent Raman scattering spectra reveal that the ${{ A}}_{{\rm g}}$ mode of VOCl show a 2-lobed shape in parallel polarization configuration while a 4-lobed shape in vertical configuration. In addition, the temperature-dependent and thickness-dependent Raman scattering spectra confirm a relatively weak van der Waals interaction between each layers among VOCl single crystal. These findings might provide better understanding on the in-plane anisotropic phenomenon in VOCl layers, thus will accelate further application of 2D single crystals for nanoscale angle-dependent optoelectronics.
|
Received: 25 April 2022
Revised: 30 May 2022
Accepted manuscript online: 02 June 2022
|
PACS:
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
Fund: Project financially supported by National Natural Science Foundation of China (Grant No. U1932201), the International Partnership Program (Grant No. 211134KYSB20190063), the CAS (Chinese Academy of Sciences) Collaborative Innovation Program of Hefei Science Center (Grant No. 2020HSCCIP002), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2020-002), the Youth Innovation Promotion Association of CAS (Grant No. 2022457), and the USTC Research Funds of the Double First-Class Initiative (YD2310002004). |
Corresponding Authors:
Shuangming Chen
E-mail: csmp@ustc.edu.cn
|
Cite this article:
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼) In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction 2022 Chin. Phys. B 31 096802
|
[1] Ling X, Wang H, Huang S, Xia F and Dresselhaus M S 2015 Proc. Natl. Acad. Sci. USA 112 4523 [2] Xiaomu W, Aaron MJ, Kyle LS, Vy T, Yichen J, Huan Z, et al. 2015 Nat. Nanotechnol. 10 517 [3] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458 [4] Fang Y, Pan J, He J, Luo R, Wang D, Che X, et al. 2018 Angew. Chem. Int. Ed. 57 1232 [5] Nam G H, He Q, Wang X, Yu Y, Chen J, Zhang K, et al. 2019 Adv. Mater. 31 1807764 [6] Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, et al. 2015 Nano Lett. 15 5667 [7] Liu F, Zheng S, He X, Chaturvedi A, He J, Chow W L, et al. 2016 Adv. Funct. Mater. 26 1169 [8] Zhang E, Wang P, Li Z, Wang H, Song C, Huang C, et al. 2016 ACS Nano 10 8067 [9] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J and Ralph D C 2017 Nat. Phys. 13 300 [10] Song Q, Pan X, Wang H, Zhang K, Tan Q, Li P, et al. 2016 Sci. Rep. 6 29254 [11] Huang S, Tatsumi Y, Ling X, Guo H, Wang Z, Watson G, et al. 2016 ACS Nano 10 8964 [12] Yang S, Liu Y, Wu M, Zhao L D, Lin Z, Cheng H C, et al. 2018 Nano Res. 11 554 [13] Zhang C, Ouyang H, Miao R, Sui Y, Hao H, Tang Y, et al. 2019 Adv. Opt. Mater. 7 1900631 [14] Papadakis S J, De Poortere E P, Shayegan M and Winkler R 2000 Phys. Rev. Lett. 84 5592 [15] Cui Q, Luo Z, Cui Q, Zhu W, Shou H, Wu C, et al. 2021 Adv. Funct. Mater. 31 2105339 [16] Guo J, Liu Y, Ma Y, Zhu E, Lee S, Lu Z, et al. 2018 Adv. Mater. 30 1705934 [17] Zhou Z, Cui Y, Tan P H, Liu X and Wei Z 2019 J. Semicond. 40 061001 [18] Glawion S, Scholz M R, Zhang Y Z, Valentí R, Saha-Dasgupta T, Klemm M, et al. 2009 Phys. Rev. B 80 155119 [19] Schönleber A, Angelkort J, van Smaalen S, Palatinus L, Senyshyn A and Morgenroth W 2009 Phys. Rev. B 80 064426 [20] Zhu W, Cui Q, Adam M L, Liu Z, Zhang L, Dai Z, et al. 2021 2D Mater. 8 025010 [21] Wang W J, Xu X T, Shen J, Wang Z, Zhang S L and Qu Z 2021 Chin. Phys. B 30 107502 [22] Miao N, Xu B, Zhu L, Zhou J and Sun Z 2018 J. Am. Chem. Soc. 140 2417 [23] Yao Y, Zhang Y, Xiong W, Wang Z, Sendeku M G, Li N, et al. 2019 Adv. Funct. Mater. 29 1903017 [24] Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S and Tan P H 2015 Chem. Soc. Rev. 44 2757 [25] Late D J, Liu B, Matte H S S R, Rao C N R and Dravid V P 2012 Adv. Funct. Mater. 22 1894 [26] Wang X, Shi W, She G and Mu L 2011 J. Am. Chem. Soc. 133 16518 [27] Wu J, Mao N, Xie L, Xu H and Zhang J 2015 Angew. Chem. Int. Ed. 54 2366 [28] Lu D, Luo S, Liu S, Yao H, Ren X, Zhou W, et al. 2018 J. Phys. Chem. C 122 24459 [29] Luo S, Qi X, Yao H, Ren X, Chen Q and Zhong J 2017 J. Phys. Chem. C 121 4674 [30] Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, et al. 2014 Nat. Commun. 5 3252 [31] Ping Gao, et al. 2016 J. Electrochem. Soc. 163 A2326 [32] Zhang T, Wang Y, Li H, Zhong F, Shi J, Wu M, et al. 2019 ACS Nano 13 11353 [33] Fang Y, Wang F, Wang R, Zhai T and Huang F 2021 Adv. Mater. 33 2101505 [34] Chen H, Li Y, Wu H, Peng Y, Fang Y, Chen C, et al. 2019 Solid State Commun. 289 56 [35] Viana B C, Alencar R S, Vieira A G, Carozo V, Filho A G S, Wang J, et al. 2020 Vib. Spectrosc. 111 103169 [36] Chen Y, Deng C, Wei Y, Liu J, Su Y, Xie S, et al. 2021 Appl. Phys. Lett. 119 063104 [37] Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F and Katiyar R S 2013 J. Phys. Chem. C 117 9042 [38] Late D J, Maitra U, Panchakarla L S, Waghmare U V and Rao C N R 2011 J. Phys.:Condens. Matter 23 055303 [39] Taube A, Judek J, Jastrzębski C, Duzynska A, Świtkowski K and Zdrojek M 2014 ACS Appl. Mater. Interfaces 6 8959 [40] Pawbake A S, Pawar M S, Jadkar S R and Late D J 2016 Nanoscale 8 3008 [41] Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, et al. 2015 Nat. Commun. 6 8572 [42] Li Z, Wang Y, Jiang J, Liang Y, Zhong B, Zhang H, et al. 2020 Nano Res. 13 591 [43] Irfan B, Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F, Katiyar R S, et al. 2014 J. Appl. Phys. 115 173506 [44] Lee S, Kim K, Dhakal K P, Kim H, Yun W S, Lee J, et al. 2017 Nano Lett. 17 7744 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|