Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117501    DOI: 10.1088/1674-1056/ac7bf9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer

Zhen-Dong Chen(陈振东)1,†, Mei-Yang Ma(马眉扬)2,†, Sen-Fu Zhang(张森富)3,4, Mang-Yuan Ma(马莽原)1, Zi-Zhao Pan(潘咨兆)1, Xi-Xiang Zhang(张西祥)4, Xue-Zhong Ruan(阮学忠)2,‡, Yong-Bing Xu(徐永兵)2,§, and Fu-Sheng Ma(马付胜)1,¶
1 Jiangsu Key Laboratory of Opto-Electronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210046, China;
2 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
4 Physical Science and Engineering Division(PSE), King Abdullah University of Science and Technology(KAUST), Thuwal 23955-6900, Saudi Arabia
Abstract  An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting [Pt/Co/Ta]10 multilayer by measuring the time-resolved magneto-optical Kerr effect. The observed interlayer mode depends on the interlayer spin-pumping and spin transfer torque among the neighboring Co layers. This mode shows monotonically increasing frequency-field dependence which is similar to the ferromagnetic resonance mode, but within higher frequency range. Besides, the damping of the interlayer mode is found to be a relatively low constant value of 0.027 which is independent of the external field. This work expounds the potential application of the [heavy-metal/ferromagnetic-metal]n multilayers to skyrmion-based magnonic devices which can provide multiple magnon modes, relatively low damping, and skyrmion states, simultaneously.
Keywords:  dynamic properties of magnetization      spin waves      domain structure      magnetic properties of interfaces  
Received:  12 May 2022      Revised:  21 June 2022      Accepted manuscript online:  27 June 2022
PACS:  75.40.Gb (Dynamic properties?)  
  75.30.Ds (Spin waves)  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074189, 11704191, 11774160, and 61427812), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20192006 and BK20211144), and the Postdoctoral Research Funding Program of Jiangsu Province, China (Grant No. 2021K503C).
Corresponding Authors:  Xue-Zhong Ruan, Yong-Bing Xu, Fu-Sheng Ma     E-mail:  xzruan@nju.edu.cn;ybxu@nju.edu.cn;phymafs@njnu.edu.cn

Cite this article: 

Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜) Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer 2022 Chin. Phys. B 31 117501

[1] Hutchby J A, Bourianoff G I, Zhirnov V V and Brewer J E 2002 IEEE Circuits Dev. Mag. 18 28
[2] Bernstein K, Cavin R K, Porod W, Seabaugh A and Welser J 2010 Proc. IEEE 98 2169
[3] Nikonov D E and Young I A 2013 Proc. IEEE 101 2498
[4] Nikonov D E and Young I A 2015 IEEE J. Explor. Solid-State Comput. Devices Circuits 1 3
[5] Pan C and Naeemi A 2017 Proc. 2017$ Des. Autom. Test Eur. DATE 2017 133
[6] Vasseur J O, Dobrzynski L, Djafari-Rouhani B and Puszkarski H 1996 Phys. Rev. B 54 1043
[7] Neusser S and Grundler D 2009 Adv. Mater. 21 2927
[8] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001
[9] Nikitov S A, Kalyabin D V, Lisenkov I V, et al. 2015 Physics-Uspekhi 58 1002
[10] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453
[11] Mahmoud A, Ciubotaru F, Vanderveken F, Chumak A V, Hamdioui S, Adelmann C and Cotofana S 2020 J. Appl. Phys. 128 161101
[12] Yu H, Xiao J and Schultheiss H 2021 Phys. Rep. 905 1
[13] Zhang Z, Jin L, Wen T, Liao Y, Tang X, Zhang H and Zhong Z 2020 Sci. Sin. Informationis 50 67
[14] Barman A, Gubbiotti G, Ladak S, et al. 2021 J. Phys.: Condens. Matter 33 413001
[15] Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G and Demokritov S O 2012 Nat. Mater. 11 1028
[16] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Appl. Phys. Lett. 92 022505
[17] Lee K S and Kim S K 2008 J. Appl. Phys. 104 053909
[18] Chumak A V, Serga A A and Hillebrands B 2014 Nat. Commun. 5 4700
[19] Klingler S, Pirro P, Br?cher T, Leven B, Hillebrands B and Chumak A V 2014 Appl. Phys. Lett. 105 152410
[20] Yu W, Lan J and Xiao J 2020 Phys. Rev. Appl. 13 024055
[21] Nikitov S A, Tailhades P and Tsai C S 2001 J. Magn. Magn. Mater. 236 320
[22] Puszkarski H and Krawczyk M 2003 Solid State Phenom. 94 125
[23] Chumak A V, Serga A A and Hillebrands B 2017 J. Phys. D: Appl. Phys. 50 244001
[24] Zakeri K 2020 J. Phys. Condens. Matter 32 363001
[25] Stamps R L, Breitkreutz S, ?kerman J, Chumak A V, Otani Y, Bauer G E W, Thiele J U, Bowen M, Majetich S A, Kl?ui M, Prejbeanu I L, Dieny B, Dempsey N M and Hillebrands B 2014 J. Phys. D. Appl. Phys. 47 333001
[26] Ma F, Zhou Y, Braun H B and Lew W S 2015 Nano Lett. 15 4029
[27] Chen Z and Ma F 2021 J. Appl. Phys. 130 090901
[28] Roldán-Molina A, Santander M J, Nunez A S and Fernández-Rossier J 2015 Phys. Rev. B 92 245436
[29] Roldán-Molina A, Nunez A S and Fernández-Rossier J 2016 New J. Phys. 18 045015
[30] Kim S K and Tserkovnyak Y 2017 Phys. Rev. Lett. 119 077204
[31] Diáz S A, Hirosawa T, Klinovaja J and Loss D 2020 Phys. Rev. Res. 2 013231
[32] Tokura Y and Kanazawa N 2020 Chem. Rev. 121 2857
[33] Everschor-Sitte K, Masell J, Reeve R M and Kl?ui M 2018 J. Appl. Phys. 124 240901
[34] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
[35] Wiesendanger R 2016 Nat. Rev. Mater. 1 16044
[36] Zhang S, Zhang J, Wen Y, Chudnovsky E M and Zhang X 2018 Appl. Phys. Lett. 113 192403
[37] Flacke L, Ahrens V, Mendisch S, Körber L, Böttcher T, Meidinger E, Yaqoob M, Müller M, Liensberger L, Kákay A, Becherer M, Pirro P, Althammer M, Geprägs S, Huebl H, Gross R and Weiler M 2021 Phys. Rev. B 104 L100417
[38] Wang H, Chen J, Liu T, Zhang J, Baumgaertl K, Guo C, Li Y, Liu C, Che P, Tu S, Liu S, Gao P, Han X, Yu D, Wu M, Grundler D and Yu H 2020 Phys. Rev. Lett. 124 027203
[39] Chen J, Hu J and Yu H 2021 ACS Nano 15 4372
[40] Szulc K, Mendisch S, Mruczkiewicz M, Casoli F, Becherer M and Gubbiotti G 2021 Phys. Rev. B 103 134404
[41] Satywali B, Ma F, He S, Raju M, Kravchuk V P, Garst M, Soumyanarayanan A and Panagopoulos C 2018 arXiv preprint arXiv: 1802.03979
[42] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D and Klaüi M 2016 Nat. Phys. 13 170
[43] Satywali B, Kravchuk V P, Pan L, Raju M, He S, Ma F, Petrovi? A P, Garst M and Panagopoulos C 2021 Nat. Commun. 12 1909
[44] Zhang S, Zhang J, Wen Y, Chudnovsky E M and Zhang X 2018 Commun. Phys. 1 36
[45] Zhang S, Zhang J, Wen Y, Peng Y, Qiu Z, Matsumoto T and Zhang X 2020 Appl. Phys. Lett. 116 142402
[46] Woo S, Mann M, Tan A J, Caretta L and Beach G S D 2014 Appl. Phys. Lett. 105 212404
[47] Sud A, Tacchi S, Sagkovits D, Barton C, Sall M, Diez L H, Stylianidis E, Smith N, Wright L, Zhang S, Zhang X, Ravelosona D, Carlotti G, Kurebayashi H, Kazakova O and Cubukcu M 2021 Sci. Rep. 11 23626
[48] Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F and Panagopoulos C 2017 Nat. Mater. 16 898
[49] Kittel C 1958 Phys. Rev. 110 1295
[50] Hiebert W K, Stankiewicz A and Freeman M R 1997 Phys. Rev. Lett. 79 1134
[51] Liu Z, Sydora R D and Freeman M R 2008 Phys. Rev. B 77 174410
[52] Barman A and Barman S 2009 Phys. Rev. B 79 144415
[53] Mecking N 2008 A comprehensive study of the AMR-induced microwave photovoltage, photocurrent and photoresistance in Permalloy microstrips, Verlag Dr. Hut
[54] Lu X, Atkinson L J, Kuerbanjiang B, Liu B, Li G, Wang Y, Wang J, Ruan X, Wu J, Evans R F L, Lazarov V K, Chantrell R W and Xu Y 2019 Appl. Phys. Lett. 114 192406
[55] Qin H J, Tsurkan S, Ernst A and Zakeri K 2019 Phys. Rev. Lett. 123 257202
[56] Klingler S, Amin V, Gepr?gs S, Ganzhorn K, Maier-Flaig H, Althammer M, Huebl H, Gross R, McMichael R D, Stiles M D, Goennenwein S T B and Weiler M 2018 Phys. Rev. Lett. 120 127201
[57] Camley R E, Rahman T S and Mills D L 1983 Phys. Rev. B 41 261
[58] Granberg P and Mika K 1983 Phys. Rev. B 27 2955
[59] Camley R E and Cottam M G 1987 Phys. Rev. B 35 189
[60] Li B, Yang J and Yang G 1994 Phys. Rev. B 50 9906
[61] Qin H, Hämäläinen S J and Van Dijken S 2018 Sci. Rep. 8 5755
[62] Balá? P and Barna? J 2015 Phys. Rev. B 91 104415
[63] Shiota Y, Taniguchi T, Ishibashi M, Moriyama T and Ono T 2020 Phys. Rev. Lett. 125 017203
[64] Sud A, Zollitsch C W, Kamimaki A, Dion T, Khan S, Iihama S, Mizukami S and Kurebayashi H 2020 Phys. Rev. B 102 100403
[65] Skarsv?ag H, Kapelrud A and Brataas A 2014 Phys. Rev. B 90 094418
[66] Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V and Fert A 2016 Nat. Nanotechnol. 11 444
[67] Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y and Yang H 2017 Nat. Commun. 8 14761
[68] Cortés-Ortu?o D and Landeros P 2013 J. Phys. Condens. Matter 25 156001
[69] Moon J H, Seo S M, Lee K J, Kim K W, Ryu J, Lee H W, McMichael R D and Stiles M D 2013 Phys. Rev. B 88 184404
[70] Iihama S, Ma Q, Kubota T, Mizukami S, Ando Y and Miyazaki T 2012 Appl. Phys. Express 5 083001
[71] Walowski J, Kaufmann M D, Lenk B, Hamann C, McCord J and Münzenberg M 2008 J. Phys. D.: Appl. Phys. 41 164016
[72] Deb M, Popova E, Hehn M, Keller N, Petit-Watelot S, Bargheer M, Mangin S and Malinowski G 2019 Phys. Rev. Appl. 12 044006
[1] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[2] Evolution of domain structure in Fe3GeTe2
Siqi Yin(尹思琪), Le Zhao(赵乐), Cheng Song(宋成), Yuan Huang(黄元), Youdi Gu(顾有地), Ruyi Chen(陈如意), Wenxuan Zhu(朱文轩), Yiming Sun(孙一鸣), Wanjun Jiang(江万军), Xiaozhong Zhang(章晓中), and Feng Pan(潘峰). Chin. Phys. B, 2021, 30(2): 027505.
[3] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[4] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[5] Evolution of magnetic domain structure of martensite in Ni-Mn-Ga films under the interplay of the temperature and magnetic field
Xie Ren (谢忍), Wei Jun (韦俊), Liu Zhong-Wu (刘仲武), Tang Yan-Mei (唐妍梅), Tang Tao (唐涛), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(6): 068103.
[6] Anomalous Hall effect in perpendicular CoFeB thin films
Zhu Tao (朱涛). Chin. Phys. B, 2014, 23(4): 047504.
[7] Angle-dependent spin waves in antidot bilayers
Hu Chun-Lian (胡春莲), Liao Leng (廖棱), Stamps R. Chin. Phys. B, 2014, 23(12): 127501.
[8] Exchange couplings in magnetic films
Liu Wei (刘伟), Liu Xiong-Hua (刘雄华), Cui Wei-Bin (崔伟斌), Gong Wen-Jie (龚文杰), Zhang Zhi-Dong (张志东). Chin. Phys. B, 2013, 22(2): 027104.
[9] Monte Carlo simulation on dielectric relaxation and dipole cluster state in relaxor ferroelectrics
Zhu Chen(朱琛) and Liu Jun-Ming(刘俊明). Chin. Phys. B, 2010, 19(9): 097702.
[10] Influence of the distance between two voltage contacts on giant magneto-impedance of Co-based amorphous wires
Zhang Shu-Ling(张树玲), Xing Da-Wei(邢大伟), and Sun Jian-Fei(孙剑飞) . Chin. Phys. B, 2010, 19(7): 077502.
[11] The phenomenon of even bulk modes variance in a ferromagnetic A--A bilayer system
Zhou Wen-Ping(周文平),Yun Guo-Hong(云国宏), and Liang Xi-Xia(梁希侠) . Chin. Phys. B, 2009, 18(12): 5496-5500.
[12] Vortex domain structures and dc current dependence of magneto-resistances in magnetic tunnel junctions
Wei Hong-Xiang (魏红祥), Lu Qing-Feng (路庆凤), Zhao Su-Fen (赵素芬), Zhang Xie-Qun (张谢群), Feng Jia-Feng (丰家峰), Han Xiu-Feng (韩秀峰). Chin. Phys. B, 2004, 13(9): 1553-1559.
[13] Domain structures of Nd13Fe80B7 magnets during HDDR process
Zhang Zhen-Rong (张臻蓉), Pang Zhi-Yong (庞智勇), Zhao Yi-Min (赵义敏), Zhang Zheng-Yi (张正义), Han Sheng-Hao (韩圣浩), Han Bao-Shan (韩宝善). Chin. Phys. B, 2003, 12(11): 1305-1309.
[14] Investigation of the magnetic domain structure of (PtCoPt)/Si multilayers by magnetic force microscopy
Zhang Zhen-Rong (张臻蓉), Liu Hong (刘洪), Han Bao-Shan (韩宝善). Chin. Phys. B, 2002, 11(6): 629-634.
No Suggested Reading articles found!