1 Jiangsu Key Laboratory of Opto-Electronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210046, China; 2 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; 4 Physical Science and Engineering Division(PSE), King Abdullah University of Science and Technology(KAUST), Thuwal 23955-6900, Saudi Arabia
Abstract An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting [Pt/Co/Ta]10 multilayer by measuring the time-resolved magneto-optical Kerr effect. The observed interlayer mode depends on the interlayer spin-pumping and spin transfer torque among the neighboring Co layers. This mode shows monotonically increasing frequency-field dependence which is similar to the ferromagnetic resonance mode, but within higher frequency range. Besides, the damping of the interlayer mode is found to be a relatively low constant value of 0.027 which is independent of the external field. This work expounds the potential application of the [heavy-metal/ferromagnetic-metal]n multilayers to skyrmion-based magnonic devices which can provide multiple magnon modes, relatively low damping, and skyrmion states, simultaneously.
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074189, 11704191, 11774160, and 61427812), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20192006 and BK20211144), and the Postdoctoral Research Funding Program of Jiangsu Province, China (Grant No. 2021K503C).
Corresponding Authors:
Xue-Zhong Ruan, Yong-Bing Xu, Fu-Sheng Ma
E-mail: xzruan@nju.edu.cn;ybxu@nju.edu.cn;phymafs@njnu.edu.cn
Cite this article:
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜) Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer 2022 Chin. Phys. B 31 117501
[1] Hutchby J A, Bourianoff G I, Zhirnov V V and Brewer J E 2002 IEEE Circuits Dev. Mag.18 28 [2] Bernstein K, Cavin R K, Porod W, Seabaugh A and Welser J 2010 Proc. IEEE98 2169 [3] Nikonov D E and Young I A 2013 Proc. IEEE101 2498 [4] Nikonov D E and Young I A 2015 IEEE J. Explor. Solid-State Comput. Devices Circuits1 3 [5] Pan C and Naeemi A 2017 Proc. 2017$ Des. Autom. Test Eur. DATE2017 133 [6] Vasseur J O, Dobrzynski L, Djafari-Rouhani B and Puszkarski H 1996 Phys. Rev. B54 1043 [7] Neusser S and Grundler D 2009 Adv. Mater.21 2927 [8] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys.43 264001 [9] Nikitov S A, Kalyabin D V, Lisenkov I V, et al. 2015 Physics-Uspekhi58 1002 [10] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys.11 453 [11] Mahmoud A, Ciubotaru F, Vanderveken F, Chumak A V, Hamdioui S, Adelmann C and Cotofana S 2020 J. Appl. Phys.128 161101 [12] Yu H, Xiao J and Schultheiss H 2021 Phys. Rep.905 1 [13] Zhang Z, Jin L, Wen T, Liao Y, Tang X, Zhang H and Zhong Z 2020 Sci. Sin. Informationis50 67 [14] Barman A, Gubbiotti G, Ladak S, et al. 2021 J. Phys.: Condens. Matter33 413001 [15] Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G and Demokritov S O 2012 Nat. Mater.11 1028 [16] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Appl. Phys. Lett.92 022505 [17] Lee K S and Kim S K 2008 J. Appl. Phys.104 053909 [18] Chumak A V, Serga A A and Hillebrands B 2014 Nat. Commun.5 4700 [19] Klingler S, Pirro P, Br?cher T, Leven B, Hillebrands B and Chumak A V 2014 Appl. Phys. Lett.105 152410 [20] Yu W, Lan J and Xiao J 2020 Phys. Rev. Appl.13 024055 [21] Nikitov S A, Tailhades P and Tsai C S 2001 J. Magn. Magn. Mater.236 320 [22] Puszkarski H and Krawczyk M 2003 Solid State Phenom.94 125 [23] Chumak A V, Serga A A and Hillebrands B 2017 J. Phys. D: Appl. Phys.50 244001 [24] Zakeri K 2020 J. Phys. Condens. Matter32 363001 [25] Stamps R L, Breitkreutz S, ?kerman J, Chumak A V, Otani Y, Bauer G E W, Thiele J U, Bowen M, Majetich S A, Kl?ui M, Prejbeanu I L, Dieny B, Dempsey N M and Hillebrands B 2014 J. Phys. D. Appl. Phys.47 333001 [26] Ma F, Zhou Y, Braun H B and Lew W S 2015 Nano Lett.15 4029 [27] Chen Z and Ma F 2021 J. Appl. Phys.130 090901 [28] Roldán-Molina A, Santander M J, Nunez A S and Fernández-Rossier J 2015 Phys. Rev. B92 245436 [29] Roldán-Molina A, Nunez A S and Fernández-Rossier J 2016 New J. Phys.18 045015 [30] Kim S K and Tserkovnyak Y 2017 Phys. Rev. Lett.119 077204 [31] Diáz S A, Hirosawa T, Klinovaja J and Loss D 2020 Phys. Rev. Res.2 013231 [32] Tokura Y and Kanazawa N 2020 Chem. Rev.121 2857 [33] Everschor-Sitte K, Masell J, Reeve R M and Kl?ui M 2018 J. Appl. Phys.124 240901 [34] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater.2 17031 [35] Wiesendanger R 2016 Nat. Rev. Mater.1 16044 [36] Zhang S, Zhang J, Wen Y, Chudnovsky E M and Zhang X 2018 Appl. Phys. Lett.113 192403 [37] Flacke L, Ahrens V, Mendisch S, Körber L, Böttcher T, Meidinger E, Yaqoob M, Müller M, Liensberger L, Kákay A, Becherer M, Pirro P, Althammer M, Geprägs S, Huebl H, Gross R and Weiler M 2021 Phys. Rev. B104 L100417 [38] Wang H, Chen J, Liu T, Zhang J, Baumgaertl K, Guo C, Li Y, Liu C, Che P, Tu S, Liu S, Gao P, Han X, Yu D, Wu M, Grundler D and Yu H 2020 Phys. Rev. Lett.124 027203 [39] Chen J, Hu J and Yu H 2021 ACS Nano15 4372 [40] Szulc K, Mendisch S, Mruczkiewicz M, Casoli F, Becherer M and Gubbiotti G 2021 Phys. Rev. B103 134404 [41] Satywali B, Ma F, He S, Raju M, Kravchuk V P, Garst M, Soumyanarayanan A and Panagopoulos C 2018 arXiv preprint arXiv: 1802.03979 [42] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D and Klaüi M 2016 Nat. Phys.13 170 [43] Satywali B, Kravchuk V P, Pan L, Raju M, He S, Ma F, Petrovi? A P, Garst M and Panagopoulos C 2021 Nat. Commun.12 1909 [44] Zhang S, Zhang J, Wen Y, Chudnovsky E M and Zhang X 2018 Commun. Phys.1 36 [45] Zhang S, Zhang J, Wen Y, Peng Y, Qiu Z, Matsumoto T and Zhang X 2020 Appl. Phys. Lett.116 142402 [46] Woo S, Mann M, Tan A J, Caretta L and Beach G S D 2014 Appl. Phys. Lett.105 212404 [47] Sud A, Tacchi S, Sagkovits D, Barton C, Sall M, Diez L H, Stylianidis E, Smith N, Wright L, Zhang S, Zhang X, Ravelosona D, Carlotti G, Kurebayashi H, Kazakova O and Cubukcu M 2021 Sci. Rep.11 23626 [48] Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F and Panagopoulos C 2017 Nat. Mater.16 898 [49] Kittel C 1958 Phys. Rev.110 1295 [50] Hiebert W K, Stankiewicz A and Freeman M R 1997 Phys. Rev. Lett.79 1134 [51] Liu Z, Sydora R D and Freeman M R 2008 Phys. Rev. B77 174410 [52] Barman A and Barman S 2009 Phys. Rev. B79 144415 [53] Mecking N 2008 A comprehensive study of the AMR-induced microwave photovoltage, photocurrent and photoresistance in Permalloy microstrips, Verlag Dr. Hut [54] Lu X, Atkinson L J, Kuerbanjiang B, Liu B, Li G, Wang Y, Wang J, Ruan X, Wu J, Evans R F L, Lazarov V K, Chantrell R W and Xu Y 2019 Appl. Phys. Lett.114 192406 [55] Qin H J, Tsurkan S, Ernst A and Zakeri K 2019 Phys. Rev. Lett.123 257202 [56] Klingler S, Amin V, Gepr?gs S, Ganzhorn K, Maier-Flaig H, Althammer M, Huebl H, Gross R, McMichael R D, Stiles M D, Goennenwein S T B and Weiler M 2018 Phys. Rev. Lett.120 127201 [57] Camley R E, Rahman T S and Mills D L 1983 Phys. Rev. B41 261 [58] Granberg P and Mika K 1983 Phys. Rev. B27 2955 [59] Camley R E and Cottam M G 1987 Phys. Rev. B35 189 [60] Li B, Yang J and Yang G 1994 Phys. Rev. B50 9906 [61] Qin H, Hämäläinen S J and Van Dijken S 2018 Sci. Rep.8 5755 [62] Balá? P and Barna? J 2015 Phys. Rev. B91 104415 [63] Shiota Y, Taniguchi T, Ishibashi M, Moriyama T and Ono T 2020 Phys. Rev. Lett.125 017203 [64] Sud A, Zollitsch C W, Kamimaki A, Dion T, Khan S, Iihama S, Mizukami S and Kurebayashi H 2020 Phys. Rev. B102 100403 [65] Skarsv?ag H, Kapelrud A and Brataas A 2014 Phys. Rev. B90 094418 [66] Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V and Fert A 2016 Nat. Nanotechnol.11 444 [67] Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y and Yang H 2017 Nat. Commun.8 14761 [68] Cortés-Ortu?o D and Landeros P 2013 J. Phys. Condens. Matter25 156001 [69] Moon J H, Seo S M, Lee K J, Kim K W, Ryu J, Lee H W, McMichael R D and Stiles M D 2013 Phys. Rev. B88 184404 [70] Iihama S, Ma Q, Kubota T, Mizukami S, Ando Y and Miyazaki T 2012 Appl. Phys. Express5 083001 [71] Walowski J, Kaufmann M D, Lenk B, Hamann C, McCord J and Münzenberg M 2008 J. Phys. D.: Appl. Phys.41 164016 [72] Deb M, Popova E, Hehn M, Keller N, Petit-Watelot S, Bargheer M, Mangin S and Malinowski G 2019 Phys. Rev. Appl.12 044006
Exchange couplings in magnetic films Liu Wei (刘伟), Liu Xiong-Hua (刘雄华), Cui Wei-Bin (崔伟斌), Gong Wen-Jie (龚文杰), Zhang Zhi-Dong (张志东). Chin. Phys. B, 2013, 22(2): 027104.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.