Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 086401    DOI: 10.1088/1674-1056/ac67c4
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Nonvanishing optimal noise in cellular automaton model of self-propelled particles

Guang-Le Du(杜光乐)1 and Fang-Fu Ye(叶方富)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A minimal cellular automaton model is introduced to describe the collective motion of self-propelled particles on two-dimensional square lattice. The model features discretization of directional and positional spaces and single-particle occupation on one lattice site. Contrary to the Vicsek model and its variants, our model exhibits the nonvanishing optimal noise. When the particle density increases, the collective motion is promoted with optimal noise strength and reduced with noise strength out of optimal region. In addition, when the square lattice undergoes edge percolation process, no abrupt change of alignment behaviors is observed at the critical point of percolation.
Keywords:  self-propelled particle      optimal noise      cellular automaton  
Received:  26 March 2022      Accepted manuscript online:  18 April 2022
PACS:  64.60.Cn (Order-disorder transformations)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  64.60.aq (Networks)  
Fund: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000) and the National Natural Science Foundation of China (Grant No. 12090054).
Corresponding Authors:  Fang-Fu Ye     E-mail:  fye@iphy.ac.cn

Cite this article: 

Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富) Nonvanishing optimal noise in cellular automaton model of self-propelled particles 2022 Chin. Phys. B 31 086401

[1] Helbing D, Farkas I and Vicsek T 2000 Nature 407 487
[2] Cavagna A, Cimarelli A, Giardina I, Parisi G, San-tagati R, Stefanini F and Viale M 2010 Proc. Natl. Acad. Sci. USA 107 11865
[3] Bhattacharya K and Vicsek T 2010 New J. Phys. 12 093019
[4] Zhang H P, Béer A, Florin E L and Swinney H L 2010 Proc. Natl. Acad. Sci. USA 107 13626
[5] Dombrowski C, Cisneros L, Chatkaew S, Goldstein R E and Kessler J O 2004 Phys. Rev. Lett. 93 098103
[6] Riedel I H, Kruse K and Howard J 2005 Science 309 300
[7] Takagi D, Palacci J, Braunschweig A B, Shelley M J and J Zhang 2014 Soft Matter 10 1784
[8] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[9] Grégoire G and Chaté H 2004 Phys. Rev. Lett. 92 025702
[10] Chaté H, Ginelli F and Montagne R 2006 Phys. Rev. Lett. 96 180602
[11] Narayan V, Ramaswamy S and Menon N 2007 Science 317 105
[12] Grégoire G, Chaté H and Tu Y 2003 Phys. D 181 157
[13] Cates M E, Wittmer J P, Bouchaud J P and Claudinet P 1998 Phys. Rev. Lett. 81 1841
[14] Quint D A and Gopinathan A 2015 Phys. Biol. 12 046008
[15] Morin A, Desreumaux N, Caussin J B and Bartolo D 2016 Nat. Phys. 13 63
[16] Peruani F, Klauss T, Deutsch A and Voss-Boehme A 2011 Phys. Rev. Lett. 106 128101
[17] Csahok Z and T Vicsek 1994 J. Phys. Math. Gen. 27 L591
[18] Li W 2015 Sci. Rep. 5 13603
[19] Bussemaker H J, Deutsch A and Geigant E 1997 Phys. Rev. Lett. 78 5018
[20] Csahók Z and Vicsek T 1995 Phys. Rev. E 52 5297
[21] Chaté H, Ginelli F, Grégoire G and Raynaud F 2008 Phys. Rev. E 77 046113
[22] Chepizhko O, Altmann E G and Peruani F 2013 Phys. Rev. Lett. 110 238101
[23] Bonilla L L and Trenado C 2019 Phys. Rev. E 99 012612
[24] Boccaletti S, Bianconi G, Criado R, del Genio C I, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z and Zanin M 2014 Phys. Rep. 544 1
[25] Nagel K and Schreckenberg M 1992 J. Phys. I France 2 2221
[26] Li Z, Liu F and Sun J 2011 Chin. Phys. B 20 088901
[27] Lefauve A and Saintillan D 2014 Phys. Rev. E 89 021002
[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[3] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[4] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[5] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[6] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[7] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[8] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[9] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[10] Anomalous boundary deformation induced by enclosed active particles
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康). Chin. Phys. B, 2017, 26(10): 100502.
[11] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[12] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[13] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[14] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[15] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
No Suggested Reading articles found!