Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 067103    DOI: 10.1088/1674-1056/22/6/067103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The effect of interface hopping on inelastic scattering of oppositely charged polarons in polymers

Di Bing (邸冰)a, Wang Ya-Dong (王亚东)a b, Zhang Ya-Lin (张亚琳)a, An Zhong (安忠)a
a College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China;
b Zhangjiakou Vocational and Technical College, Zhangjiakou 075051, China
Abstract  The inelastic scattering of oppositely charge polarons in polymer heterojunctions is believed to be fundamental importance for the light-emitting and transport properties of conjugated polymers. Based on the tight-binding SSH model, and by using a nonadiabatic molecular dynamic method, we investigate the effects of interface hopping on inelastic scattering of oppositely charged polarons in a polymer heterojunction. It is found that the scattering processes of the charge and lattice defect depend sensitively on the hopping integrals at the polymer/polymer interface when the interface potential barrier and applied electric field strength are constant. In particular, at an intermediate electric field, when the interface hopping integral of the polymer/polymer heterojunction material is increased beyond a critical value, two polarons can combine to become a lattice deformation in one of the two polymer chains, with the electron and the hole bound together, i.e., a self-trapped polaron-exciton. The yield of excitons then increases to a peak value. These results show that interface hopping is of fundamental importance and facilitates the formation of polaron-excitons.
Keywords:  polarons      electron-phonon interactions      exciton      polymers  
Received:  31 October 2012      Revised:  28 November 2012      Accepted manuscript online: 
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  71.35.Aa (Frenkel excitons and self-trapped excitons)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074064), the Key Project of the Ministry of Education of China (Grant No. 210021), and the Natural Science Fund of Hebei Province of China (Grant No. A2010000357).
Corresponding Authors:  An Zhong     E-mail:  zan@hebtu.edu.cn

Cite this article: 

Di Bing (邸冰), Wang Ya-Dong (王亚东), Zhang Ya-Lin (张亚琳), An Zhong (安忠) The effect of interface hopping on inelastic scattering of oppositely charged polarons in polymers 2013 Chin. Phys. B 22 067103

[1] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L and Holmes A B 1990 Nature 347 539
[2] Braun D and Heeger A J 1991 Appl. Phys. Lett. 58 1982
[3] Greenham N C, Moratti S C, Bradley D D C, Friend R H and Holmes A B 1993 Nature 365 628
[4] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[5] Su W P, Schrieffer J R and Heeger A J 1980 Phys. Rev. B 22 2099
[6] Brazovskii S A and Kirova N N 1981 JETP Lett. 33 4
[7] Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781
[8] Liu W, Li Y, Qu Z, Gao K, Yin S and Liu D S 2009 Chin. Phys. Lett. 26 037101
[9] Wang Y D, Meng Y, Di B, Wang S L and An Z 2010 Chin. Phys. B 19 127105
[10] Johansson A and Stafström S 2001 Phys. Rev. Lett. 86 3602
[11] Wu C Q, Qiu Y, An Z and Nasu K 2003 Phys. Rev. B 68 125416
[12] Yu J F, Wu C Q, Sun X and Nasu K 2004 Phys. Rev. B 70 064303
[13] Yan Y H, An Z, Wu C Q and Nasu K 2005 Eur. Phys. J. B 48 501
[14] Di B, An Z, Li Y C and Wu C Q 2007 Europhys. Lett. 79 17002
[15] Liu W, Liu D S and Li H H 2010 Acta Phys. Sin. 59 6405 (in Chinese)
[16] An Z, Di B, Zhao H and Wu C Q 2008 Eur. Phys. J. B 63 71
[17] Baldo M A, O'Brien D F, Thompson M E and Forrest S R 1999 Phys. Rev. B 60 14422
[18] Friend R H, Bradley D D D, Dos Santos D A, Bredas J L, Logdlund M and Salanech W R 1999 Nature 397 121
[19] Cao Y, Parker I D, Yu G, Zhang C and Heeger A J 1999 Nature 397 414
[20] Wohlgenannt M, Jiang X M, Vardeny Z V and Janssen R A J 2002 Phys. Rev. Lett. 88 197401
[21] Meulenkamp E A, van Aar R, van den Bastiaansen A M, van den Biggelaar A M, Borner H, Brunner K, Buchel M, van Dijken A, Kiggen N M M, Kilitziraki M, de Kok M M, Langeveld B M W, Ligter M P H, Vulto S I E, van de Weijer P and Winter S H P M 2004 Proc. SPIE 5464 90
[22] Sun Z, Li Y, Gao K, Liu D S, An Z and Xie S J 2010 Organic Electronics 11 279
[23] Meng Y, Liu X J, Di B and An Z 2009 J. Chem. Phys. 131 244502
[24] Li S, Tong G P and George T F 2009 J. Appl. Phys. 106 074513
[25] Di B, Meng Y, Wang Y D, Liu X J and An Z 2011 J. Phys. Chem. B 115 9339
[26] Greenham N C, Shinar J, Partee J, Lane P A, Amir O, Lu F and Friend R H 1996 Phys. Rev. B 53 13528
[27] Morteani A C, Dhoo A S, Kim J S, Silva C, Greenham N C, Murphy C, Moons E, Cina S, Burroughes J H and Friend R H 2003 Adv. Mater 15 1708
[28] Di B, Meng Y, An Z and Li Y C 2008 Chin. Phys. Lett. 25 679
[29] Wang L X, Liu D S, Xie S J, Han S H and Mei L M 2003 Chin. Phys. 12 548
[30] Di B, Meng Y, Wang Y D, Liu X J and An Z 2011 J. Phys. Chem. B 115 964
[31] Brankin R W, Gladwell I and Shampine L F 2012 RKSUITE: a suite of Runge-Kutta codes for the initial value problem for ODEs, Softreport 92-S1, Department of Mathematics, Southern Methodist University, Dallas, Texas, USA, 1992, see http://www.netlib.org
[32] An Z, Wu C Q and Sun X 2004 Phys. Rev. Lett. 93 216407
[33] Su W P and Schrieffer J R 1980 Proc. Natl. Acad. Sci. USA 77 5626
[1] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[2] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[3] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[4] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[5] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[6] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[9] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[10] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[11] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[12] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[13] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[14] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[15] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
No Suggested Reading articles found!