Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067303    DOI: 10.1088/1674-1056/ab888c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing

Yun-Ping Qi(祁云平)1,3, Li-Yuan Wang(王力源)1, Yu Zhang(张宇)1, Ting Zhang(张婷)1, Bao-He Zhang(张宝和)1, Xiang-Yu Deng(邓翔宇)1, Xiang-Xian Wang(王向贤)2
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
2 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
3 Engineering Research Center of Gansu Provence for Intelligent Information Technology and Application, Northwest Normal University, Lanzhou 730070, China
Abstract  A single baffle metal-insulator-metal (MIM) waveguide coupled with a semi-circular cavity and a cross-shaped cavity is proposed based on the multiple Fano resonance characteristics of surface plasmon polaritons (SPPs) subwavelength structure. The isolated state formed by two resonators interferes with the wider continuous state mode formed by the metal baffle, forming Fano resonance that can independently be tuned into five different modes. The formation mechanism of Fano resonance is analyzed based on the multimode interference coupled mode theory (MICMT). The finite element method (FEM) and MICMT are used to simulate the transmission spectra of this structure and analyze the influence of structural parameters on the refractive index sensing characteristics. And the transmission responses calculated by the FEM simulation are consistent with the MICMT theoretical results very well. The results show that the figure of merit (FOM) can reach 193 and the ultra-high sensitivity is 1600 nm/RIU after the structure parameters have been optimized, and can provide theoretical basis for designing the high sensitive refractive index sensors based on SPPs waveguide for high-density photonic integration with excellent performance in the near future.
Keywords:  surface plasmon polaritons      MIM waveguide      Fano resonance      finite element method  
Received:  19 January 2020      Revised:  02 April 2020      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.79.-e (Optical elements, devices, and systems)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  71.38.-k (Polarons and electron-phonon interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61367005 and 61865008) and the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA078).
Corresponding Authors:  Yun-Ping Qi     E-mail:  yunpqi@126.com

Cite this article: 

Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤) Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing 2020 Chin. Phys. B 29 067303

[1] Fano U 1961 Phys. Rev. 124 1866
[2] Klimov V V, Pavlov A A, Treshin I V and Zabkov I V 2017 J. Phys. D: Appl. Phys. 50 285101
[3] Ren H, Li X, Zhang Q and Gu M 2016 Science 352 805
[4] Hu F, Yi H and Zhou Z 2011 Opt. Lett. 36 1500
[5] Yang Y R and Guan J F 2016 Acta Phys. Sin. 65 057301 (in Chinese)
[6] Liu C, Fu G, Wang F, Yi Z, Xu C, Yang L and Sun T 2019 Optik 196 163173
[7] Liu J Q, Wang L L, He M D, Huang W Q, Wang D, Zou B S and Wen S 2008 Opt. Express 16 4888
[8] Li J K, Chen Z Q, Yang H, Yi Z, Chen X, Yao W T, Duan T, Wu P H, Li J F and Yi Y G 2020 Nanomaterials 10 257
[9] Wang H Y, Su D, Yang S, Dou X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L and Sun B Q 2015 Chin. Phys. Lett. 32 107804
[10] Chen Y, Luo P, Tian Y N, Liu X F, Zhao Z Y and Zhu Q G 2017 Acta Opt. Sin. 37 0924002
[11] Li J K, Chen X F, Yi Z, Yang H, Tang Y G, Yi Y, Yao W T, Wang J Q and Yi Y G 2020 Mater. Today Energy 16 100390
[12] Wang Y Y, Chen Z Q, Xu D Y, Yi Z, Chen X F, Chen J, Tang Y J, Wu P H and Yi Y J 2020 Results Phys. 16 102951
[13] Qin F, Chen Z Q, Chen X F, Yi Z, Yao W T, Duan T, Wu P H, Yang H, Li G F and Yi Y G 2020 Nanomaterials 10 207
[14] Qi Y P, Zhang Y, Liu C Q, Zhang T, Zhang B H, Wang L Y, Deng X Y, Bai Y L and Wang X X 2020 Results Phys. 16 103012
[15] Qi Y P, Zhang Y, Liu C Q, Zhang T, Zhang B H, Wang L Y, Deng X Y, Wan X X and Yu Y 2020 Nanomaterials 10 533
[16] Chen J, Wang X X, Tang F, Ye X, Yang L M and Zhang Y B 2020 Results Phys. 16 102867
[17] Wu C C, Guo X D, Hu H, Yang X X and Dai Q 2019 Acta Phys. Sin. 68 148103 (in Chinese)
[18] Tong L, Wei H, Zhang S and Xu H 2014 Sensors 14 7959
[19] Zhang S, Bao K, Halas N J, Xu H and Nordlander P 2011 Nano Lett. 11 1657
[20] Lu H, Liu X, Mao D and Wang G 2012 Op. Lett. 37 3780
[21] Wen K, Hu Y, Chen L Zhou J, Lei L and Meng Z 2016 Plasmonics 11 315
[22] Wu D, Yin J, Tian J P and Yang R C 2018 J. Quantum Opt. 24 55 (in Chinese)
[23] Wu C, Khanikaev A B and Shvets G 2011 Phys. Rev. Lett. 106 107403
[24] Kim J, Soref R and Buchwald W R 2010 Opt. Express 18 17997
[25] Zheng S, Ruan Z, Gao S, Long Y, Li S, He M and Wang J 2017 Opt. Express 25 25655
[26] Qi Y P, Liu C Q, Hu B B, Deng X X and Wang X X 2019 Results Phys. 102777
[27] Fang Y H, Wen K H, Qin Y W, Li Z F and Wu B Y 2019 Opt. Commun. 12 452
[28] Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J and Yu Y 2017 Opt. Express 25 3675
[29] Wu X J, Dou C, Xu W, Zhang G B, Tian R L and Liu H L 2019 Chin. Phys. B 28 014204
[30] Haus H A 1972 Phys. Rev. B 6 4370
[31] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[32] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[33] Dionne J A, Sweatlock L A, Atwater H A and Polman A 2006 Phys. Rev. B 73 035407
[34] Zhang Q, Huang X G, Lin X S, Tao J and Jin X P 2009 Opt. Express 17 7549
[35] Hu F, Yi H and Zhou Z 2011 Opt. Express 19 4848
[36] Li S, Wang Y, Jiao R, Wang L, Duan G and Yu L 2017 Opt. Express 25 3525
[37] Shen J, Zhang X M, Li Q L, Wang X Y, Zhao Y J and Jia Y 2019 Chin. Phys. B 28 040503
[38] Wang G, Lu H, Liu X, Mao D and Duan L 2011 Opt. Express 19 3513
[39] Zhong H H, Zhou J H, Gu C J, Wang M, Fang Y T, Xu T and Zhou J 2017 Chin. Phys. B 26 127301
[40] Yang J, Song X, Chen Z, Cui L, Yang S and Yu L 2017 Plasmonics 12 1665
[41] Chen J, Li Z, Zou Y, Deng Z, Xiao J and Gong Q 2013 Plasmonics 8 1627
[42] Huang M, Chen D, Zhang L and Zhou J 2016 Chin. Phys. B 25 057303
[43] Li Z, Wen K, Chen L, Lei L, Zhou J, Zhou D and Wu B 2019 Appl. Opt. 58 4878
[44] Chen Y, Chen L, Wen K, Hu Y and Lin W 2019 Photon. Nanostruct.-Fundam. Appl. 100714
[45] Chen Y, Xu Y M and Cao J G 2019 Results Phys. 102420
[46] Ren X, Ren K and Cai Y 2017 Appl. Opt. 56 H1
[47] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[48] Seyyed Hossein, Asadpour G, Solookinejad M, Panahi E and Ahmadi Sangachin 2016 Chin. Phys. B 25 034205
[49] Chen L Y, Tang Z X, Gao J L, Li D Y, Lei C X, Cheng Z Z, Tang S L and Du Y W 2016 Chin. Phys. B 25 113301
[50] Qi Y P, Zhou P Y, Zhang T, Zhang X W, Wang Y, Liu C and Wang X X 2019 Results Phys. 14 102506
[51] Qi Y P, Wang Y, Zhang X W, Liu C, Hu B B, Bai Y L and Wang X X 2019 Results Phys. 15 102495
[52] Wang X X, Zhu J K, Wen X L, Wu X X, Wu Y, Su Y W, Tong H, Qi Y P and Yang H 2019 Opt. Mater. Express 9 3079
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[4] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[5] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[6] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[7] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[8] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[9] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[10] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[11] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[12] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[13] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[14] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[15] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
No Suggested Reading articles found!