Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027104    DOI: 10.1088/1674-1056/26/2/027104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot

Jing-Lin Xiao(肖景林)
Institute of Condensed Matter Physics, Inner Mongolia University for the Nationalities, Tongliao 028043, China
Abstract  

With hydrogen-like impurity (HLI) located in the center of CsI quantum pseudodot (QPD) and by using the variational method of Pekar type (VMPT), we investigate the first-excited state energy (FESE), excitation energy and transition frequency of the strongly-coupled bound polaron in the present paper. Temperature effects on bound polaron properties are calculated by employing the quantum statistical theory (QST). According to the present work's numerical results, the FESE, excitation energy and transition frequency decay (amplify) with raising temperature in the regime of lower (higher) temperature. They are decreasing functions of Coulomb impurity potential strength.

Keywords:  temperature effect      bound polaron      CsI quantum pseudodot      quantum statistical theory      excited state  
Received:  16 September 2016      Revised:  17 November 2016      Accepted manuscript online: 
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  73.21.La (Quantum dots)  
  63.20.kd (Phonon-electron interactions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11464033).

Corresponding Authors:  Jing-Lin Xiao     E-mail:  xiaojlin@126.com

Cite this article: 

Jing-Lin Xiao(肖景林) Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot 2017 Chin. Phys. B 26 027104

[1] Alivisatos A P 1996 Science 271 933
[2] Sauvage S, Boucaud P and Lobo R, et al. 2006 Phys. Rev. Lett. 88 177402
[3] Sauvage S and Boucaud P 2006 Appl. Phys. Lett. 88 063106
[4] Xu S J, Li G Q and Wang Y J, et al. 2006 Appl. Phys. Lett. 88 083123
[5] Zhang Y Y, Hu J P, Bernevig B A, Wang X R, Xie X C and Liu W M 2008 Phys. Rev. B 78 155413
[6] Zhang Y Y, Hu J P, Bernevig B A, Wang X R, Xie X C and Liu W M 2009 Phys. Rev. Lett. 102 106401
[7] Xiao J L 2016 Superlatt. Microstruc. 90 308
[8] Khordad R 2015 Physica E 69 249
[9] Khordad R 2015 Int. J. Mod. Phys. B 29 1550058
[10] Li N, Guo K X and Shao S, et al. 2012 Opt. Mater. 34 1459
[11] Xiao J L 2015 Mod. Phys. Lett. B 29 1550098
[12] Sun Y, Ding Z H and Xiao J L 2016 J. Electron. Mater. 45 3576
[13] Chen Y J and Xiao J L 2008 Acta Phys. Sin. 57 6758 (in Chinese)
[14] Chen Y J and Xiao J L 2009 Commun. Theor. Phys. 52 601
[15] Li Z X, Ding Z H and Xiao J L 2010 J. Low Temp. Phys. 159 592
[16] Sun Y, Ding Z H and Xiao J L 2014 Physica B 444 103
[17] Ding Z H and Xiao J L 2011 Chin. Phys. B 20 097104
[18] Sun Y, Xiao B Y and Yang G G 2015 J. Neimenguu. Natl. Univ. 30 372
[19] Xiao J L 2015 J. Neimenguu. Natl. Univ. 30 369
[20] Ma X J, Qi B and Xiao J L 2015 J. Low. Temp. Phys. 180 315
[21] Cetin A 2008 Phys. Lett. A 372 3852
[22] Landau L D and Pekar S I 1948 Zh. Eksp. Teor. Fiz 18 419
[23] Pekar S I and Deigen M F 1948 Zh. Eksp. Teor. Fiz 18 481
[24] Xiao W, Qi B and Xiao J L 2015 J. Low Temp. Phys. 179 166
[25] Ding Z H, Sun Y and Xiao J L 2012 Int. J. Quantum Inform. 10 1250077
[26] Devreese J T 1972 Polarons in ionic crystals and polar semiconductors (Amsterdam: North-Holland) p. 721
[27] Ji A C, Xie X C and Liu W M 2007 Phys. Rev. Lett. 99 183602
[1] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[2] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[3] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[4] Geometric quantities of lower doubly excited bound states of helium
Chengdong Zhou(周成栋), Yuewu Yu(余岳武), Sanjiang Yang(杨三江), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2022, 31(3): 030301.
[5] Molecule opacity study on low-lying states of CS
Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(10): 103101.
[6] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[7] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[8] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[9] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[10] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[11] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[12] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[13] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[14] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[15] Crystal growth and spectral properties of Tb: Lu2O3
Jiaojiao Shi(施佼佼), Bin Liu(刘斌), Qingguo Wang(王庆国), Huili Tang(唐慧丽), Feng Wu(吴锋), Dongzhen Li(李东振), Hengyu Zhao(赵衡煜), Zhanshan Wang(王占山), Wen Deng(邓文), Xu Zian(徐子安), Xu Jiayue(徐家跃), Xiaodong Xu(徐晓东), Jun Xu(徐军). Chin. Phys. B, 2018, 27(9): 097801.
No Suggested Reading articles found!