Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 107103    DOI: 10.1088/1674-1056/21/10/107103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Built-in electric field effect on cyclotron mass of magnetopolarons in a wurtzite InxGa1-xN/GaN quantum well

Zhao Feng-Qi (赵凤岐), Yong Mei (咏梅)
a College of Physics and Electronic Information, Inner Mongolia Normal University, Inner Mongolia KeyLaboratory for Physics and Chemistry of Functional Materials, Hohhot 010022, China;
b Division of Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
Abstract  The cyclotron mass of magnetopolarons in wurtzite InxGa1-xN/GaN quantum well is studied in the presence of an external magnetic field by using the Larsen perturbation method. The effects of the built-in electric field and different phonon modes including interface, confined and half-space phonon modes are considered in our calculation. The results for a zinc-blende quantum well are also given for comparison. It is found that the main contribution to the transition energy comes from half-space and interface phonon modes when the well width is very small while the confined modes play a more important role in a wider well due to the location of the electron wave function. As the well width increases, the cyclotron mass of magnetopolarons first increases to a maximum and then decreases either with or without the built-in electric field in the wurtzite structure and the built-in electric field slightly reduces the cyclotron mass. The variation of cyclotron mass in a zinc-blende structure is similar to that in a wurtzite structure. With the increase of external magnetic field, the cyclotron mass of polarons almost linearly increases. The cyclotron frequency of magnetopolarons is also discussed.
Keywords:  wurtzite quantum well      built-in electric field      magnetopolaron      cyclotron mass  
Received:  02 February 2012      Revised:  02 April 2012      Accepted manuscript online: 
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  63.20.kr  
  73.21.Fg (Quantum wells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10964007) and the Natural Science Foundation of Inner Mongolia, China (Grant No. 2009MS0110).
Corresponding Authors:  Zhao Feng-Qi     E-mail:  fqzhao@imnu.edu.cn

Cite this article: 

Zhao Feng-Qi (赵凤岐), Yong Mei (咏梅) Built-in electric field effect on cyclotron mass of magnetopolarons in a wurtzite InxGa1-xN/GaN quantum well 2012 Chin. Phys. B 21 107103

[1] Das Sarma S 1984 Phys. Rev. Lett. 52 859
[2] Peeters F M, Wu X G and Devreese J T 1986 Phys. Rev. B 34 1160
[3] Larsen D M 1986 Phys. Rev. B 33 799
[4] Osorio F A P, Degani M H and Hipolito O 1988 Phys. Rev. B 38 8477
[5] Kong X J, Wei C W and Gu S W 1989 Phys. Rev. B 39 3230
[6] Hu Z, Wang Y T, Gu S W, Au-Yeung T C and Yeung Y Y 1992 J. Phys.: Condens. Matter 4 5087
[7] Zhao F Q, Wang X and Liang X X 1993 Phys. Lett. A 175 225
[8] Hai G Q and Peeters F M 1999 Phys. Rev. B 60 8984
[9] Li J B, Wei B H and Xia J B 1999 Physica B 271 256
[10] Klimin S N, Fomin V M and Devreese J T 2008 Phys. Rev. B 77 205311
[11] Nykanen H, Mattila P, Suihkonen S, Riikonen J, Quillet E, Honeyer E, Bellessa J and Sopanen M 2011 J. Appl. Phys. 109 08310-1
[12] Wu J Q 2009 J. Appl. Phys. 106 011101
[13] Malyutenko V K, Bolgov S S and Podoltsrv A D 2010 Appl. Phys. Lett. 97 251110
[14] Zhao H and Tansu N 2010 J. Appl. Phys. 107 113110
[15] Yoshida H, Kuwabara M, Yamashita Y, Uchiyama K and Kan H 2010 Appl. Phys. Lett. 96 211122
[16] Belabbes A, de Carvalho L C, Schleife A and Bechstedt F 2011 Phys. Rev. B 84 125108
[17] Chang W L and John A P 2011 Chin. Phys. B 20 077104
[18] Cai J and Shi J J 2008 Solid State Commun. 145 235
[19] Pokatilov E P, Nika D L and Balandin A A 2006 Appl. Phys. Lett. 89 113508
[20] Tchernycheva M, Nevou L, Doyennette L, Julien F H, Warde E, Guillot F, Monroy E, Bellet-Amalric E, Remmele T and Albrecht M 2006 Phys. Rev. B 73 125347
[21] van Capel P J S, Turchinovich D, Porte H P, Lahmann S, Rossow U, Hangleiter A and Dijkhuis J I 2011 Phys. Rev. B 84 085317
[22] Komirenko S M, Kim K W, Stroscio M A and Dutta M 1999 Phys. Rev. B 59 5013
[23] Lee B C, Kim K W, Stroscio M A and Dutta M 1998 Phys. Rev. B 58 4860
[24] Zhu Y H and Shi J J 2009 Physica E 41 746
[25] Zhao F Q and Zhang M 2011 Int. J. Mod. Phys. B 25 2105
[26] Larsen D M 1964 Phys. Rev. 135 A419
[27] Larsen D M 1984 Phys. Rev. B 30 4595
[28] Goldhana R, Scheiner J, Shokhovets S, Frey T, Köhler U, As D J and Lischka K 2000 Appl. Phys. Lett. 76 291
[29] Vurgaftman I and Melyer J R 2003 J. Appl. Phys. 94 3675
[30] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[31] Perlin P, Gorczyca I, Christensen N E, Grzegorg I, Teisseyre H and Suski T 1992 Phys. Rev. B 45 13307
[32] Azuhata T, Sota T, Suzuki K and Nakamura S 1995 J. Phys.: Condens. Matter 7 L129
[33] Misek J and Srobar F 1979 Electrotech. Cas. 30 690
[34] Harima H 2002 J. Phys.: Condens. Matter 14 R967
[35] Kim K, Lambrecht W R L and Segall B 1996 Phys. Rev. B 53 16310
[36] Mora-Ramos M E 2001 Phys. Stat. Sol. (b) 223 843
[37] Liang X X and Yang J S 1996 Solid State Commun. 100 629
[38] Singleton J, Nicholas R J and Rogers D C 1988 Surf. Sci. 196 429
[1] Alleviating hysteresis and improving device stability of perovskite solar cells via alternate voltage sweeps
Chao Xia(夏超), Wei-Dong Song(宋伟东), Chong-Zhen Zhang(张崇臻), Song-Yang Yuan(袁松洋), Wen-Xiao Hu(胡文晓), Ping Qin(秦萍), Ru-Peng Wang(王汝鹏), Liang-Liang Zhao(赵亮亮), Xing-Fu Wang(王幸福), Miao He(何苗), Shu-Ti Li(李述体). Chin. Phys. B, 2017, 26(1): 018401.
[2] Effects of electron-optical phonon interactions on the polaron energy in a wurtzite ZnO/MxZn1-xO quantum well
Zhao Feng-Qi (赵凤岐), Zhang Min (张敏), Bai Jin-Hua (白金花). Chin. Phys. B, 2015, 24(9): 097105.
[3] Phonon-assisted intersubband transitions in wurtzite GaN/InxGa1-xN quantum wells
Zhu Jun (朱俊), Ban Shi-Liang (班士良), Ha Si-Hua (哈斯花). Chin. Phys. B, 2012, 21(9): 097301.
No Suggested Reading articles found!