CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of electron-optical phonon interactions on the polaron energy in a wurtzite ZnO/MxZn1-xO quantum well |
Zhao Feng-Qi (赵凤岐), Zhang Min (张敏), Bai Jin-Hua (白金花) |
College of Physics and Electronic Information, Inner Mongolia Normal University, Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Hohhot 010022, China |
|
|
Abstract We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee-Low-Pines variational method, giving the ground state energy, transition energy, and phonon contributions from various optical-phonon modes to the ground state energy as functions of the well width and Mg composition. In our calculations, we considered the effects of confined optical phonon modes, interface-optical phonon modes, and half-space phonon modes, as well as the anisotropy of the electron effective band mass, phonon frequency, and dielectric constant. Our numerical results indicate that the electron-optical phonon interactions importantly affect the polaronic energies in the ZnO/MgxZn1-xO quantum well. The electron-optical phonon interactions decrease the polaron energies. For quantum wells with narrower wells, the interface optical phonon and half-space phonon modes contribute more to the polaronic energies than the confined phonon modes. However, for wider quantum wells, the total contribution to the polaronic energy mainly comes from the confined modes. The contributions of the various phonon modes to the transition energy change differently with increasing well width. The contribution of the half-space phonons decreases slowly as the QW width increases, whereas the contributions of the confined and interface phonons reach a maximum at d ≈ 5.0 nm and then decrease slowly. However, the total contribution of phonon modes to the transition energy is negative and increases gradually with the QW width of d. As the composition x increases, the total contribution of phonons to the ground state energies increases slowly, but the total contributions of phonons to the transition energies decrease gradually. We analyze the physical reasons for these behaviors in detail.
|
Received: 06 February 2015
Revised: 10 April 2015
Accepted manuscript online:
|
PACS:
|
71.38.-k
|
(Polarons and electron-phonon interactions)
|
|
73.21.Fg
|
(Quantum wells)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264027 and 11364030), the Project of Prairie Excellent Specialist of Inner Mongolia, China, and the “Thousand, Hundred and Ten” Talent Training Project Foundation of Inner Mongolia Normal University, China (Grant No. RCPY-2-2012-K-039). |
Corresponding Authors:
Zhao Feng-Qi
E-mail: fqzhao@imnu.edu.cn
|
Cite this article:
Zhao Feng-Qi (赵凤岐), Zhang Min (张敏), Bai Jin-Hua (白金花) Effects of electron-optical phonon interactions on the polaron energy in a wurtzite ZnO/MxZn1-xO quantum well 2015 Chin. Phys. B 24 097105
|
[1] |
Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M and Hosono H 2003 Science 300 1269
|
[2] |
Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
|
[3] |
Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y and Goto T 1998 Appl. Phys. Lett. 73 1038
|
[4] |
Gu S L, Zhang R, Zhou S M, Li S Z, Hang Y, Xu J and Liu H X 2006 Acta Phys. Sin. 55 1398 (in Chinese)
|
[5] |
Gruber T, Kirchner C, Kling R, Reuss F and Waag A 2004 Appl. Phys. Lett. 84 5359
|
[6] |
Park S H 2007 J. Korean Phys. Soc. 51 1404
|
[7] |
Makino T, Chia C H, Tuan N T, Sun H D, Segawa Y, Kawasaki M, Ohtomo A, Tamura K and Koinuma H 2000 Appl. Phys. Lett. 77 975
|
[8] |
Zhang B P, Binh N T, Wakatsuki K, Liu C Y, Segawa Y and Usami N 2005 Appl. Phys. Lett. 86 032105
|
[9] |
Lee B C, Kim K V and Stroscio M A 1997 Phys. Rev. B 56 997
|
[10] |
bretagnon T, Lefebvre P, Guillet T, Taliercio T, Gil B and Morhain C 2007 Appl. Phys. Lett. 90 201912
|
[11] |
Makino T, Chia C H, Tuan N T, Sun H D, Segawa Y, Kawasaki M, Ohtomo A, Tamura K and Koinuma H 2000 Appl. Phys. Lett. 77 1632
|
[12] |
Sadofev S, Blumstengel S, Cui J, Puls J, Rogaschewski S, Schäfer P, Sadofyev Y G and Henneberger F 2005 Appl. Phys. Lett. 87 091903
|
[13] |
Coli G and Bajaj K K 2001 Appl. Phys. Lett. 78 2861
|
[14] |
Fan W J, Xia J B, Agus P A, Tan S T, Yu S F and Sun X W 2006 J. Appl. Phys. 99 013702
|
[15] |
Lü Y M, Su S C and Mei T 2011 Acta Phys. Sin. 90 096801 (in Chinese)
|
[16] |
Xu T N, Wu H Z, Qiu D J and Chen N B 2003 Chin. Phys. Lett. 20 1829
|
[17] |
Fan W J, Abiyasa A P, Tan S T, Yu S F, Sun X W, Xia J B, Yeo Y C, Li M F and Chong T C 2006 J. Cryst. Growth 287 28
|
[18] |
Furno E, Chiaria S, Penna M, Bellotti E and Goano M 2010 J. Electron. Mater. 39 936
|
[19] |
Lin D Y, Huang T P, Kao Y C, Huang C C, Kuo H C and Chang L 2011 Physica E 44 659
|
[20] |
Weston L, Cui X Y, Delley B and Stampfl C 2012 Phys. Rev. B 86 205322
|
[21] |
Stölzel M, Kupper J, Brandt M, Muller A, Benndorf C, Lorenz M and Grundmann M 2012 J. Appl. Phys. 111 063701
|
[22] |
Wang L, Ma J G and Xu H Y 2013 Appl. Phys. Lett. 102 031905
|
[23] |
Su S C, Zhu H and Zhang L X 2013 Appl. Phys. Lett. 103 131104
|
[24] |
Fang X, Wang X H and Zhao D X 2014 Physica E 59 93
|
[25] |
Puls J, Sadofev S, Schäfer P and Henneberger F 2014 Phys. Rev. B 89 081301
|
[26] |
Lee B C, Kim K W, Stroscio M A and Dutta M 1998 Phys. Rev. B 58 4860
|
[27] |
Shi J J 2003 Phys. Rev. B 68 165335
|
[28] |
Shi J J, Chu X L and Goldys E M 2004 Phys. Rev. B 70 115318
|
[29] |
Zhao F Q, Guo Z Z and Zhu J 2014 J. Appl. Phys. 116 013512
|
[30] |
Lambrecht W, Rodina A V, Limpijunmnong S, Segall B and Meyer B K 2002 Phys. Rev. B 65 075207
|
[31] |
Ashkenov N, Mbenkum B N, Bundesmann C, Riede V, Lorenz M, Spemann D, Kaidashev E M, Kasic A, Schubert M, Grundmann M, Wagner G, Neumann H, Darakchieva V, Arwin H and Monemar B 2003 J. Appl. Phys. 93 126
|
[32] |
Wu H Z, Qiu D J, Cai Y J, Xu X L and Chen N B 2002 J. Cryst. Growth 245 50
|
[33] |
Coleman V, Buda M, Tan H, Jagadish C, Phillips M, Koike K, Sasa S, Inoue M and Yano M 2006 Semcicod. Sci. Technol. 21 L25
|
[34] |
Janoti A, Segev D and van del Walle C G 2006 Phys. Rev. B 74 045202
|
[35] |
Julier M, Campo J, Gil B and Lascaray J P 1998 Phys. Rev. B 57 R6791
|
[36] |
Lawes G, Risbud A S, Ramirez A P and Seshadri R 2005 Phys. Rev. B 71 045201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|