CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field |
Kang-Kang Ju(居康康), CuiXian Guo(郭翠仙), Xiao-Yin Pan(潘孝胤) |
Department of Physics, Ningbo University, Ningbo 315211, China |
|
|
Abstract We study the two-dimensional weak-coupling Fröhlich polaron in a completely anisotropic quantum dot in a perpendicular magnetic field. By performing a unitary transformation, we first transform the Hamiltonian into a new one which describes an anisotropic harmonic oscillator with new mass and trapping frequencies interacting with the same phonon bath but with different interaction form and strength. Then employing the second-order Rayleigh-Schrödinger perturbation theory, we obtain the polaron correction to the ground-state energy. The magnetic field and anisotropic effects on the polaron correction to the ground-state energy are discussed.
|
Received: 03 May 2017
Revised: 06 June 2017
Accepted manuscript online:
|
PACS:
|
71.38.-k
|
(Polarons and electron-phonon interactions)
|
|
71.38.Fp
|
(Large or Fr?hlich polarons)
|
|
63.20.K-
|
(Phonon interactions)
|
|
73.21.La
|
(Quantum dots)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375090) and the K. C. Wong Magna Foundation in Ningbo University, China. |
Corresponding Authors:
Xiao-Yin Pan
E-mail: panxiaoyin@nbu.edu.cn
|
Cite this article:
Kang-Kang Ju(居康康), CuiXian Guo(郭翠仙), Xiao-Yin Pan(潘孝胤) Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field 2017 Chin. Phys. B 26 097103
|
[1] |
Kastner M A 1992 Rev. Mod. Phys. 64 849
|
[2] |
Zimbovskaya N A and Pederson M R 2011 Phys. Rept. 509 1
|
[3] |
Zhou L L 2011 Chin. Phys. Lett. 28 128504
|
[4] |
Harrison P and Valavanis A 2016 Quantum Wells, Wires and Dots: Theoretical and Computational Physics of semiconductor nanostructures (4th Edn) (Chichester: John Wiley and Sons Ltd)
|
[5] |
Sikorski C and Merkt U 1989 Phys. Rev. Lett. 62 2164
|
[6] |
Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283
|
[7] |
Chakraborty T 1999 Quantum Dots (Amsterdam: Elsevier)
|
[8] |
Ferreyra J M, Bosshard P and Proetto C R 1997 Phys. Rev. B 55 13682
|
[9] |
Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
|
[10] |
Degani M H and Farias G A 1990 Phys. Rev. B 42 11950
|
[11] |
Zhu K D and Gu S W 1992 Phys. Lett. A 163 435
|
[12] |
Chen Q, Ren Y, Jiao Z and Wang K 1998 Phys. Rev. B 58 16340
|
[13] |
Kervan N, Altanhan T and Chatterjee A 2003 Phys. Lett. A 315 280
|
[14] |
Yan Z W and Feng Z Y 2016 Chin. Phys. B 25 107804
|
[15] |
Yao Q Z and Chen S H 2011 J. Low. Temp. Phys. 162 34
|
[16] |
Haupt R and Wendler L 1993 Physica B 184 394
|
[17] |
Haupt R and Wendler L 1994 Solid-State Electron. 37 1153
|
[18] |
Mitra T K, Chatterjee A andMukhopadhyay S S 1987 Phys. Rept. 153 91
|
[19] |
Zhu K D and Gu S W 1993 Phys. Rev. B 47 12941
|
[20] |
Yip S K 1989 Phys. Rev. B 40 3682
|
[21] |
Zhu K D and Kobayashi T 1994 Phys. Lett. A 190 337
|
[22] |
Zhu K D and Kobayashi T 1994 Sol. Stat. Commun. 92 353
|
[23] |
Zhu K D and Kobayashi T 1995 Sol. Stat. Commun. 95 805
|
[24] |
Kandemir B S and Altanhan T 1999 Phys. Rev. B 60 4834
|
[25] |
Kandemir B S and Altanhan T 1999 Phys. Lett. A 287 403
|
[26] |
Chen S H 2011 Physica E 43 1007
|
[27] |
Chen S H 2014 Physica B 452 55
|
[28] |
Fock V 1928 Z. Phys. 47 446
|
[29] |
Dippel O, Schmelcher P and Cederbaum L S 1994 Phys. Rev. A 49 4415
|
[30] |
Ezaki T, Mori N and Hamaguchi C 1997 Phys. Rev. B 56 6428
|
[31] |
Maksym P A 1998 Physica B 249 233
|
[32] |
Ezaki T, Mori N and Hamaguchi C 1998 Physica B 249 238
|
[33] |
Reimann S M, Koskinen M, Lindelof P E and Manninen M 1998 Physica E 2 648
|
[34] |
Reimann S M, Koskinen M, Kolehmainen J, Manninen M, Austing D G and Tarucha S 1999 Eur. Phys. J. D 9 105
|
[35] |
Austing D G 1999 Phys. Rev. B 60 11514
|
[36] |
Lee I H, Kim Y H and Ahn K H 2001 J. Phys.: Condens. Matter 13 1987
|
[37] |
Drouvelis P S, Schmelcher P and Diakonos F K 2004 Phys. Rev. B 69 035333
|
[38] |
Drouvelis P S, Schmelcher P and Diakonos F K 2004 J. Phys.: Condens. Matter 16 3633
|
[39] |
Kośik P and Okopińska A 2010 Phys. Lett. A 374 3841
|
[40] |
Yannouleas C and Landman U 2007 Rep. Prog. Phys. 70 2067
|
[41] |
Birman J L, Nazmitdinov R G and Yukalov V I 2013 Phys. Rep. 526 1
|
[42] |
Kokiantonis N and Castrigiano D P L 1987 J. Phys. A: Math. Gen. 18 45
|
[43] |
Yonei K 1989 J. Phys. A: Math. Gen. 22 2415
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|