Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 097103    DOI: 10.1088/1674-1056/26/9/097103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field

Kang-Kang Ju(居康康), CuiXian Guo(郭翠仙), Xiao-Yin Pan(潘孝胤)
Department of Physics, Ningbo University, Ningbo 315211, China
Abstract  We study the two-dimensional weak-coupling Fröhlich polaron in a completely anisotropic quantum dot in a perpendicular magnetic field. By performing a unitary transformation, we first transform the Hamiltonian into a new one which describes an anisotropic harmonic oscillator with new mass and trapping frequencies interacting with the same phonon bath but with different interaction form and strength. Then employing the second-order Rayleigh-Schrödinger perturbation theory, we obtain the polaron correction to the ground-state energy. The magnetic field and anisotropic effects on the polaron correction to the ground-state energy are discussed.
Keywords:  Fröhlich polaron      anisotropic quantum dot      magnetic field      ground-state energy  
Received:  03 May 2017      Revised:  06 June 2017      Accepted manuscript online: 
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  71.38.Fp (Large or Fr?hlich polarons)  
  63.20.K- (Phonon interactions)  
  73.21.La (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375090) and the K. C. Wong Magna Foundation in Ningbo University, China.
Corresponding Authors:  Xiao-Yin Pan     E-mail:  panxiaoyin@nbu.edu.cn

Cite this article: 

Kang-Kang Ju(居康康), CuiXian Guo(郭翠仙), Xiao-Yin Pan(潘孝胤) Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field 2017 Chin. Phys. B 26 097103

[1] Kastner M A 1992 Rev. Mod. Phys. 64 849
[2] Zimbovskaya N A and Pederson M R 2011 Phys. Rept. 509 1
[3] Zhou L L 2011 Chin. Phys. Lett. 28 128504
[4] Harrison P and Valavanis A 2016 Quantum Wells, Wires and Dots: Theoretical and Computational Physics of semiconductor nanostructures (4th Edn) (Chichester: John Wiley and Sons Ltd)
[5] Sikorski C and Merkt U 1989 Phys. Rev. Lett. 62 2164
[6] Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283
[7] Chakraborty T 1999 Quantum Dots (Amsterdam: Elsevier)
[8] Ferreyra J M, Bosshard P and Proetto C R 1997 Phys. Rev. B 55 13682
[9] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[10] Degani M H and Farias G A 1990 Phys. Rev. B 42 11950
[11] Zhu K D and Gu S W 1992 Phys. Lett. A 163 435
[12] Chen Q, Ren Y, Jiao Z and Wang K 1998 Phys. Rev. B 58 16340
[13] Kervan N, Altanhan T and Chatterjee A 2003 Phys. Lett. A 315 280
[14] Yan Z W and Feng Z Y 2016 Chin. Phys. B 25 107804
[15] Yao Q Z and Chen S H 2011 J. Low. Temp. Phys. 162 34
[16] Haupt R and Wendler L 1993 Physica B 184 394
[17] Haupt R and Wendler L 1994 Solid-State Electron. 37 1153
[18] Mitra T K, Chatterjee A andMukhopadhyay S S 1987 Phys. Rept. 153 91
[19] Zhu K D and Gu S W 1993 Phys. Rev. B 47 12941
[20] Yip S K 1989 Phys. Rev. B 40 3682
[21] Zhu K D and Kobayashi T 1994 Phys. Lett. A 190 337
[22] Zhu K D and Kobayashi T 1994 Sol. Stat. Commun. 92 353
[23] Zhu K D and Kobayashi T 1995 Sol. Stat. Commun. 95 805
[24] Kandemir B S and Altanhan T 1999 Phys. Rev. B 60 4834
[25] Kandemir B S and Altanhan T 1999 Phys. Lett. A 287 403
[26] Chen S H 2011 Physica E 43 1007
[27] Chen S H 2014 Physica B 452 55
[28] Fock V 1928 Z. Phys. 47 446
[29] Dippel O, Schmelcher P and Cederbaum L S 1994 Phys. Rev. A 49 4415
[30] Ezaki T, Mori N and Hamaguchi C 1997 Phys. Rev. B 56 6428
[31] Maksym P A 1998 Physica B 249 233
[32] Ezaki T, Mori N and Hamaguchi C 1998 Physica B 249 238
[33] Reimann S M, Koskinen M, Lindelof P E and Manninen M 1998 Physica E 2 648
[34] Reimann S M, Koskinen M, Kolehmainen J, Manninen M, Austing D G and Tarucha S 1999 Eur. Phys. J. D 9 105
[35] Austing D G 1999 Phys. Rev. B 60 11514
[36] Lee I H, Kim Y H and Ahn K H 2001 J. Phys.: Condens. Matter 13 1987
[37] Drouvelis P S, Schmelcher P and Diakonos F K 2004 Phys. Rev. B 69 035333
[38] Drouvelis P S, Schmelcher P and Diakonos F K 2004 J. Phys.: Condens. Matter 16 3633
[39] Kośik P and Okopińska A 2010 Phys. Lett. A 374 3841
[40] Yannouleas C and Landman U 2007 Rep. Prog. Phys. 70 2067
[41] Birman J L, Nazmitdinov R G and Yukalov V I 2013 Phys. Rep. 526 1
[42] Kokiantonis N and Castrigiano D P L 1987 J. Phys. A: Math. Gen. 18 45
[43] Yonei K 1989 J. Phys. A: Math. Gen. 22 2415
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[4] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[5] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[10] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[11] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[12] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[13] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[14] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[15] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
No Suggested Reading articles found!