Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117802    DOI: 10.1088/1674-1056/ac6745
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence

Jin-Fu Liang(梁金福)1,†, De-Feng Xiong(熊德凤)1, Yu An(安宇)2, and Wei-Zhong Chen(陈伟中)3
1 School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China;
2 Department of Physics, Tsinghua University, Beijing 100084, China;
3 Institution of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  The most recent spectroscopic studies of moving-single bubble sonoluminescence (MSBSL) and multi-bubble sonoluminescence (MBSL) have revealed that hydrated electrons (e$_{{\rm aq}}^{-}$) are generated in MSBSL but absent in MBSL. To explore the mechanism of this phenomenon, we numerically simulate the ionization processes in single- and multi-bubble sonoluminescence in aqueous solution of terbium chloride (TbCl$_{3}$). The results show that the maximum degree of ionization of single-bubble sonoluminescence (SBSL) is approximately 10000 times greater than that of MBSL under certain special physical parameters. The hydrated electrons (e$_{{{\rm aq}}}^{-}$) formed in SBSL are far more than those in MBSL provided these electrons are ejected from a bubble into a liquid. Therefore, the quenching of e$_{{{\rm aq}}}^{-}$ to SBSL spectrum is stronger than that of the MBSL spectrum. This may be the reason that the trivalent terbium [Tb(III)] ion line intensities from SBSL in the TbCl$_{3}$ aqueous solutions with the acceptor of e$_{{{\rm aq}}}^{-}$ are stronger than those of TbCl$_{3}$ aqueous solutions without the acceptor of e$_{{{\rm aq}}}^{-}$. Whereas the Tb(III) ion line intensities from MBSL are not variational, which is significant for exploring the mechanism behind the cavitation and sonoluminescence.
Keywords:  sonoluminescence      Tb(III) ion emission      hydrated electrons      ionization processes  
Received:  05 October 2021      Revised:  09 April 2022      Accepted manuscript online:  14 April 2022
PACS:  78.60.Mq (Sonoluminescence, triboluminescence)  
  47.55.dd (Bubble dynamics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11864007 and 11564006).
Corresponding Authors:  Jin-Fu Liang     E-mail:  jfliang@gznu.edu.cn

Cite this article: 

Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中) Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence 2022 Chin. Phys. B 31 117802

[1] Gaitan D F, Crum L A, Church C C and Roy R A 1992 J. Acoust. Soc. Am. 91 66
[2] Frenzel H and Schultes H 1934 Z. Phys. Chem. B 27 421
[3] Flint E B and Suslick K S 1991 Science 253 1397
[4] Hilgenfeldt S, Grossmann S and Lohse D 1999 Nature 398 402
[5] Yasui K 2001 Phys. Rev. E 64 0160
[6] Lohse D, Brenner M P, Dupont T F, Hilgenfeldt S and Johnston B 1997 Phys. Rev. Lett. 78 1359
[7] Young J B, Nelson J A and Kang W 2001 Phys. Rev. Lett. 86 2673
[8] Brenner M P, Hilgenfeldt S and Lohse D 2002 Rev. Mod. Phys. 74 425
[9] Flannigan D J and Suslick K S 2005 Nature 434 52
[10] An Y 2006 Phys. Rev. E 74 026304
[11] Suslick K S and Flannigan D J 2008 Annu. Rev. Phys. Chem. 59 659
[12] Xu H, Glumac N and Suslick K 2010 Angew. Chem. Int. Edit. 49 1079
[13] Iii M N, Didenko Y T and Suslick K S 1999 Nature 401 772
[14] Neppiras E A 1980 Phys. Rep. 61 159
[15] Suslick K S and Flint E B 1987 Nature 330 553
[16] Ashokkumar M and Grieser F 1998 Chem. Commum. 561
[17] Pflieger R, Schneider J, Siboulet B, Moehwald H and Nikitenko S 2013 J. Phys. Chem. B 117 2979
[18] Sharipov G L, Yakshembetova L R, Abdrakhmanov A M and Gareev B M 2019 Ultrason. Sonochem. 58 104674
[19] Sharipov G L, Gareev B M, Vasilyuk K S, Galimov D I and Abdrakhmanov A M 2020 Ultrason. Sonochem. 70 1053
[20] Sharipov G L, Gareev B M and Abdrakhmanov A M 2020 J. Photoch. Photobio. A 402 112800
[21] An Y and Li C 2008 Phys. Rev. E 78 0463
[22] An Y and Li C 2009 Phys. Rev. E 80 046320
[23] Liang J and An Y 2017 Phys. Rev. E 96 0618
[24] Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628
[25] Zhang W J, Chen W and An Y 2015 Chin. Phys. B 24 047802
[26] Yuan L 2005 Phys. Rev. E 72 046309
[27] Hamilton M F, Ilinskii Y A and Zabolotskaya E A 1998 Dispersion in nonlinear acoustics (San Diego: Academic Press)
[28] An Y 2012 Phys. Rev. E 85 016305
[29] An Y 2013 Appl. Acoust. 85 016305 (in Chinese)
[30] Liang J, An Y and Chen W 2019 Ultrason. Sonochem. 58 104688
[31] Didenko Y T, McNamara W B and Suslick K S 1999 J. Am. Chem. Soc 121 5817
[32] Didenko Y T 1999 J. Phys. Chem. A 103 10783
[33] Liang J, Chen W, Zhou C, Cui W and Chen Z 2015 Phys. Lett. A 379 497
[34] Liang J, Chen W, Wang X, Yang J and Chen Z 2016 Phys. Lett. A 380 4105
[1] Computation and analysis of light emission in two-bubble sonoluminescence
Jin-Fu Liang(梁金福), Xue-You Wu(吴学由), Yu An(安宇), Wei-Zhong Chen(陈伟中), Jun Wang(王军). Chin. Phys. B, 2020, 29(9): 097801.
[2] Abnormal ionization in sonoluminescence
Zhang Wen-Juan (张文娟), An Yu (安宇). Chin. Phys. B, 2015, 24(4): 047802.
[3] The characteristics of sonoluminescence
An Yu(安宇) and Zhang Wen-Juan(张文娟) . Chin. Phys. B, 2012, 21(1): 017806.
[4] Investigation of a mutual interaction force at different pressure amplitudes in sulfuric acid
Nastaran Rezaee, Rasoul Sadighi-Bonabi, Mona Mirheydari, and Homa Ebrahimi . Chin. Phys. B, 2011, 20(8): 087804.
[5] A unique circular path of moving single bubble sonoluminescence in water
Rasoul Sadighi-Bonabi, Mona Mirheydari, Homa Ebrahimi, Nastaran Rezaee, and Lida Nikzad. Chin. Phys. B, 2011, 20(7): 074302.
[6] Comparison of Xe single bubble sonoluminescence in water and sulfuric acid
An Yu(安宇). Chin. Phys. B, 2008, 17(8): 2984-2988.
[7] Finite-amplitude vibration of a bubble in water
Qian Zu-Wen(钱祖文) and Xiao-Ling(肖灵). Chin. Phys. B, 2008, 17(10): 3785-3791.
[8] Conical bubble photoluminescence from rhodamine 6G in 1, 2-propanediol
He Shou-Jie (何寿杰), Ai Xi-Cheng (艾希成), Dong Li-Fang (董丽芳), Chen De-Ying (陈得应), Wang Qi (王骐), Li Xue-Chen (李雪辰), Zhang Jian-Ping (张建平), Wang Long (王龙). Chin. Phys. B, 2006, 15(7): 1615-1620.
[9] Spectroscopic characteristic of conical bubble luminescence
Chen Qi-Dai (陈岐岱), Fu Li-Min (付立民), Ai Xi-Cheng (艾希成), Zhang Jian-Ping (张建平), Wang Long (王龙). Chin. Phys. B, 2005, 14(4): 826-829.
[10] Finite-amplitude vibration of a bubble and sonoluminescence
Qian Zu-Wen (钱祖文), Xiao Ling (肖灵), Guo Liang-Hao (郭良浩). Chin. Phys. B, 2004, 13(7): 1059-1064.
[11] Production of large size single transient cavitation bubbles with tube arrest method
Chen Qi-Dai (陈岐岱), Wang Long (王龙). Chin. Phys. B, 2004, 13(4): 564-570.
[12] TO ENHANCE THE INTENSITY OF SONOLUMINESCENCE
Qian Zu-wen (钱祖文). Chin. Phys. B, 2001, 10(7): 636-638.
No Suggested Reading articles found!