CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strong near-field couplings of anapole modes and formation of higher-order electromagnetic modes in stacked all-dielectric nanodisks |
Bin Liu(刘彬)1,2, Ma-Long Hu(胡马龙)2, Yi-Wen Zhang(章艺文)2, Yue You(游悦)2, Zhao-Guo Liang(梁钊国)1, Xiao-Niu Peng(彭小牛)1,†, and Zhong-Jian Yang(杨中见)2,‡ |
1 Hubei Key Laboratory of Ferroelectric and Dielectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China; 2 Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China |
|
|
Abstract We theoretically study the near-field couplings of two stacked all-dielectric nanodisks, where each disk has an electric anapole mode consisting of an electric dipole mode and an electric toroidal dipole (ETD) mode. Strong bonding and anti-bonding hybridizations of the ETD modes of the two disks occur. The bonding hybridized ETD can interfere with the dimer's electric dipole mode and induce a new electric anapole mode. The anti-bonding hybridization of the ETD modes can induce a magnetic toroidal dipole (MTD) response in the disk dimer. The MTD and magnetic dipole resonances of the dimer form a magnetic anapole mode. Thus, two dips associated with the hybridized modes appear on the scattering spectrum of the dimer. Furthermore, the MTD mode is also accompanied by an electric toroidal quadrupole mode. The hybridizations of the ETD and the induced higher-order modes can be adjusted by varying the geometries of the disks. The strong anapole mode couplings and the corresponding rich higher-order mode responses in simple all-dielectric nanostructures can provide new opportunities for nanoscale optical manipulations.
|
Received: 29 September 2021
Revised: 15 November 2021
Accepted manuscript online:
|
PACS:
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
42.25.Fx
|
(Diffraction and scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11704416 and 11704107),the Hunan Provincial Natural Science Foundation of China (Grant No.2021JJ20076),and the Hubei Provincial Natural Science Foundation of China (Grant No.2020CFB557). |
Corresponding Authors:
Xiao-Niu Peng,E-mail:pengxn@hubu.edu.cn;Zhong-Jian Yang,E-mail:zjyang@csu.edu.cn
E-mail: pengxn@hubu.edu.cn;zjyang@csu.edu.cn
|
About author: 2021-11-20 |
Cite this article:
Bin Liu(刘彬), Ma-Long Hu(胡马龙), Yi-Wen Zhang(章艺文), Yue You(游悦), Zhao-Guo Liang(梁钊国), Xiao-Niu Peng(彭小牛), and Zhong-Jian Yang(杨中见) Strong near-field couplings of anapole modes and formation of higher-order electromagnetic modes in stacked all-dielectric nanodisks 2022 Chin. Phys. B 31 057802
|
[1] Genevet P, Capasso F, Aieta F, Khorasaninejad M and Devlin R 2017 Optica 4 139 [2] Khorasaninejad M and Capasso F 2017 Science 358 eaam8100 [3] Kauranen M and Zayats A V 2012 Nat. Photon. 6 737 [4] Koshelev K, Kruk S, Melik-Gaykazyan E, Choi J H, Bogdanov A, Park H G and Kivshar Y 2020 Science 367 288 [5] Biagioni P, Huang J S and Hecht B 2012 Rep. Prog. Phys. 75 024402 [6] Caldarola M, Albella P, Cortes E, Rahmani M, Roschuk T, Grinblat G, Oulton R F, Bragas A V and Maier S A 2015 Nat. Commun. 6 7915 [7] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913 [8] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S and Luk'yanchuk B 2016 Science 354 aag2472 [9] Yang Z J, Jiang R B, Zhuo X L, Xie Y M, Wang J F and Lin H Q 2017 Phys. Rep. 701 1 [10] Zywietz U, Schmidt M K, Evlyukhin A B, Reinhardt C, Aizpurua J and Chichkov B N 2015 ACS Photon. 2 913 [11] Miroshnichenko A E and Kivshar Y S 2012 Nano Lett. 12 6459 [12] Yan J H, Liu P, Lin Z Y, Wang H, Chen H J, Wang C X and Yang G W 2015 ACS Nano 9 2968 [13] Cai D J, Huang Y H, Wang W J, Ji W B, Chen J D, Chen Z H and Liu S D 2015 J. Phys. Chem. C 119 4252 [14] Baryshnikova K V, Smirnova D A, Luk'yanchuk B S and Kivshar Y S 2019 Adv. Opt. Mater. 7 1801350 [15] Miroshnichenko A E, Evlyukhin A B, Yu Y F, Bakker R M, Chipouline A, Kuznetsov A I, Luk'yanchuk B, Chichkov B N and Kivshar Y S 2015 Nat. Commun. 6 8069 [16] Koshelev K, Favraud G, Bogdanov A, Kivshar Y and Fratalocchi A 2019 Nanophotonics 8 725 [17] Yang Y Q and Bozhevolnyi S I 2019 Nanotechnology 30 204001 [18] Zanganeh E, Evlyukhin A, Miroshnichenko A, Song M, Nenasheva E and Kapitanova P 2021 Phys. Rev. Lett. 127 096804 [19] Alaee R, Rockstuhl C and Fernandez-Corbaton I 2017 Opt. Commun. 407 17 [20] Gurvitz E A, Ladutenko K S, Dergachev P A, Evlyukhin A B, Miroshnichenko A E and Shalin A S 2019 Laser Photon. Rev. 13 1800266 [21] Deng Y H, Yang Z J, Hu M L, Du X J and He J 2021 New J. Phys. 23 023004 [22] Yang Y Q, Zenin V A and Bozhevolnyi S I 2018 ACS Photon. 5 1960 [23] Zhang Wu F, Li Q, Feng Q, Wu Y and Wu L 2020 Opt. Express 28 570 [24] Baryshnikova K, Filonov D, Simovski C, Evlyukhin A, Kadochkin A, Nenasheva E, Ginzburg P and Shalin A S 2018 Phys. Rev. B 98 165419 [25] Sabri L, Huan Q L, Liu N and Cunningham B 2019 Opt. Express 27 7196 [26] Shibanuma T, Grinblat G, Albella P and Maier S A 2017 Nano Lett. 17 2647 [27] Grinblat G, Li Y, Nielsen M P, Oulton R F and Maier S A 2017 ACS Photon. 4 2144 [28] Grinblat G, Li Y, Nielsen M P, Oulton R F and Maier S A 2016 Nano Lett. 16 4635 [29] Xu L, Rahmani M, Kamali K Z, Lamprianidis A, Ghirardini L, Sautter J, Camacho-Morales R, Chen H T, Parry M, Staude I, Zhang G Q, Neshev D and Miroshnichenko A E 2018 Light Sci. Appl. 7 44 [30] Verre R, Baranov D G, Munkhbat B, Cuadra J, Kall M and Shegai T 2019 Nat. Nanotechnol. 14 679 [31] Liu S D, Fan J L, Wang W J, Chen J D and Chen Z H 2018 ACS Photon. 5 1628 [32] Du K, Li P, Gao K, Wang H, Yang Z Q, Zhang W D, Xiao F J, Chua S J and Mei T 2019 J. Phys. Chem. Lett. 10 4699 [33] Thakkar N, Rea M T, Smith K C, Heylman K D, Quillin S C, Knapper K A, Horak E H, Masiello D J and Goldsmith R H 2017 Nano Lett. 17 6927) [34] Liu J N, Huang Q L, Liu K K, Singamaneni S and Cunningham B T 2017 Nano Lett. 17 7569 [35] Wu P C, Liao C Y, Savinov V, Chung T L, Chen W T, Huang Y W, Wu P R, Chen Y H, Liu A Q, Zheludev N I and Tsai D P 2018 ACS Nano 12 1920 [36] Luk'yanchuk B, Paniagua-Dominguez R, Kuznetsov A I, Miroshnichenko A E and Kivshar Y S 2017 Phys. Rev. A 95 063820 [37] Li S Q and Crozier K B 2018 Phys. Rev. B 95 245423 [38] Yang Z J, Deng Y H, Yu Y and He J 2020 Nanoscale 12 10639 [39] Palik E D 1985 Handbook of Optical Constants of Solids (New York: Palik) pp. 547-570 [40] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|