Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117702    DOI: 10.1088/1674-1056/ac921f
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Epitaxy of III-nitrides on two-dimensional materials and its applications

Yu Xu(徐俞)1,2, Jianfeng Wang(王建峰)1,2,†, Bing Cao(曹冰)3,4, and Ke Xu(徐科)1,2,5,‡
1 Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China;
2 Shenyang National Laboratory for Materials Science, Shenyang 110010, China;
3 School of Optoelectronic Science and Engineering&Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China;
4 Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province&Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China;
5 Jiangsu Institute of Advanced Semiconductors Ltd, Suzhou 215123, China
Abstract  III-nitride semiconductor materials have excellent optoelectronic properties, mechanical properties, and chemical stability, which have important applications in the field of optoelectronics and microelectronics. Two-dimensional (2D) materials have been widely focused in recent years due to their peculiar properties. With the property of weak bonding between layers of 2D materials, the growth of III-nitrides on 2D materials has been proposed to solve the mismatch problem caused by heterogeneous epitaxy and to develop substrate stripping techniques to obtain high-quality, low-cost nitride materials for high-quality nitride devices and their extension in the field of flexible devices. In this progress report, the main methods for the preparation of 2D materials, and the recent progress and applications of different techniques for the growth of III-nitrides based on 2D materials are reviewed.
Keywords:  nitrides      two-dimensional materials      van der Waals forces  
Received:  15 April 2022      Revised:  11 September 2022      Accepted manuscript online:  15 September 2022
PACS:  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  73.61.Ey (III-V semiconductors)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 61734008) and the National Natural Science Foundation of China (Grant No. 62174173). Thanks to Yipu Qu, Yuning Wang, Lu Li, Fan Yang, Jianjie Li, Jiahao Tao, Xin Cai, Jinbiao Huang, Jizong Zhou, Yunpeng Wu, and Meng Le for their preparing the manuscript.
Corresponding Authors:  Jianfeng Wang, Ke Xu     E-mail:  jfwang2006@sinano.ac.cn;kxu2006@sinano.ac.cn

Cite this article: 

Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科) Epitaxy of III-nitrides on two-dimensional materials and its applications 2022 Chin. Phys. B 31 117702

[1] Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl. Phys. Lett. 48 353
[2] Iwaya M, Takeuchi T, Yamaguchi S, Wetzel C, Amano H and Akasaki I 1998 Jpn. J. Appl. Phys. 37 L316
[3] Nam O H, Bremser M D, Zheleva T S and Davis R F 1997 Appl. Phys. Lett. 71 2638
[4] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
[5] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J and Ismach A F 2013 ACS Nano 7 2898
[6] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
[7] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotech. 9 768
[8] Geim A K and Grigorieva I V 2013 Nature 499 419
[9] Geim A K and Novoselov K S 2010 Nanoscience and technology: a collection of reviews from nature journals (Singapore World Scientific) p. 11
[10] Geim A K 2009 Science 324 1530
[11] Soldano C, Mahmood A and Dujardin E 2010 Carbon 48 2127
[12] Lin D, Liu Y, Liang Z, Lee H W, Sun J, Wang H, Yan K, Xie J and Cui Y 2016 Nat. Nanotech. 11 626
[13] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[14] Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[15] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P and Shepard K L 2010 Nat. Nanotech. 5 722
[16] Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J and Yakobson B I 2010 Nano Lett. 10 3209
[17] Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A and Park J 2012 Nature 488 627
[18] Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M and Palacios T 2012 Nano Lett. 12 161
[19] Lin Y and Connell J W 2012 Nanoscale 4 6908
[20] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[21] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[22] Huang J K, Pu J, Hsu C L, Chiu M H, Juang Z Y, Chang Y H, Chang W H, Iwasa Y, Takenobu T and Li L J 2014 ACS Nano 8 923
[23] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
[24] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S and Li L J 2012 Adv. Mater. 24 2320
[25] Liu H, Du Y, Deng Y and Peide D Y 2015 Chem. Soc. Rev. 44 2732
[26] Long M, Gao A, Wang P, Xia H, Ott C, Pan C, Fu Y, Liu E, Chen X and Lu W 2017 Sci. Adv. 3 e1700589
[27] Guo Z, Miao N, Zhou J, Sa B and Sun Z 2017 J. Mater. Chem. C 5 978
[28] Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J, Barsoum M W and Gogotsi Y 2014 Proc. Natl. Acad. Sci. 111 16676
[29] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H 2008 Solid State Commun. 146 351
[30] Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102
[31] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[32] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R and Song Y I 2010 Nat. Nanotech. 5 574
[33] Zhu Y, Murali S, Stoller M D, Ganesh K, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A and Thommes M 2011 Science 332 1537
[34] Avouris P 2010 Nano Lett. 10 4285
[35] Tian H, Chin M L, Najmaei S, Guo Q, Xia F, Wang H and Dubey M 2016 Nano Research 9 1543
[36] Ye M, Zhang D and Yap Y K 2017 Electronics 6 43
[37] Liu F, Zhang Z, Rong X, Yu Y, Wang T, Sheng B, Wei J, Zhou S, Yang X and Xu F 2020 Adv. Funct. Mater. 30 2001283
[38] Brownson D A, Kampouris D K and Banks C E 2011 J. Power Sources 196 4873
[39] Hu J, Xie K, Liu X, Guo S, Shen C, Liu X, Li X, Wang J G and Wei B 2017 Electrochim. Acta 227 455
[40] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S and Pellegrini V 2015 Science 347 1246501
[41] Gigot A, Fontana M, Serrapede M, Castellino M, Bianco S, Armandi M, Bonelli B, Pirri C F, Tresso E and Rivolo P 2016 ACS Appl. Mater. Inter. 8 32842
[42] Qu L, Liu Y, Baek J B and Dai L 2010 ACS Nano 4 1321
[43] Lin S, Ye X, Johnson R S and Guo H 2013 J. Phys. Chem. C 117 17319
[44] Woods J M, Jung Y, Xie Y, Liu W, Liu Y, Wang H and Cha J J 2016 ACS Nano 10 2004
[45] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T and Mueller T 2013 Nat. Photon. 7 892
[46] Koppens F, Mueller T, Avouris P, Ferrari A, Vitiello M and Polini M 2014 Nat. Nanotech. 9 780
[47] Sun Z and Chang H 2014 ACS Nano 8 4133
[48] Jo S H, Kang D H, Shim J, Jeon J, Jeon M H, Yoo G, Kim J, Lee J, Yeom G Y and Lee S 2016 Adv. Mater. 28 4824
[49] Wisotzki E, Klein A and Jaegermann W 2000 Thin Solid Films 380 263
[50] Koma A 1992 Thin Solid Films 216 72
[51] Chang H, Chen Z, Li W, Yan J, Hou R, Yang S, Liu Z, Yuan G, Wang J and Li J 2019 Appl. Phys. Lett. 114 091107
[52] Distler G I and Shenyavskaya L A 1969 Nature 221 52
[53] Kim Y, Cruz S S, Lee K, Alawode B O, Choi C, Song Y, Johnson J M, Heidelberger C, Kong W and Choi S 2017 Nature 544 340
[54] Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Lijima S 2010 Nat. Nanotech. 5 574
[55] Yan Z, Lin J, Peng Z W, Sun Z Z, Zhu Y, Li L, Xiang C S, Samuel E L, Kittrell C and Tour J M 2012 ACS Nano 6 9110
[56] Lee J H, Lee E K, Joo W, J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W and Whang D 2014 Science 344 286
[57] Ouerghi A, Silly M G, Marangolo M, Mathieu C, Eddrief M, Picher M, Sirotti F, El Moussaoui S and Belkhou R 2012 ACS Nano 6 6075
[58] Li J Z, Chen M G, Samad A, Dong H C, Ray A, Zhang J W, Jiang X C, Schwingenschlogl U, Domke J, Chen C L, Han Y, Fritz T, Ruoff R S, Tian B and Zhang X X 2022 Nat. Mater. 21 740
[59] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[60] Ariffin N H Z, Haniff M A S M, Syono M I, Mohamed M A, Hamzah A A and Hashim A M 2021 ACS Omega 6 23710
[61] Sharma I, Papanai G S, Paul S J and Gupta B K 2020 ACS Omega 5 26296
[62] Yan Z C, Joshi R, You Y, Poduval G and Stride J A 2021 ACS Omega 6 8829
[63] Luo A L, Xu Y, Zhou H, Yuan Z H, Cao B, Wang C H and Xu K 2020 Mater. Res. Express 7 035025
[64] Kaushik P D, Yazdi G R, Lakshmi G B V S, Greczynski G, Yakimova R and Syvajarvi M 2020 Appl. Sci. 10 4013
[65] Cai Z Y, Liu B L, Zou X L and Cheng H M 2018 Chem. Rev. 118 6091
[66] Shen P C, Lin Y X, Wang H Z, Park J H, Leon W S, Lu A Y, Palacios T and Kong J 2018 IEEE T. Electron. Dev. 65 4040
[67] Tak B R, Kumar S, Kapoor A K, Wang D H, Li X H, Sun H D and Singh R 2021 J. Phys. D: Appl. Phys. 54 453002
[68] Wu H and Yan Z 2019 Acta Phys. Chim. Sin. 35 1052
[69] Koma A, Sunouchi K and Miyajima T 1984 Microelectron. Eng. 2 129
[70] Chung K, Lee C H and Yi G C 2010 Science 330 655
[71] Yin Y, Ren F, Wang Y, Liu Z, Ao J, Liang M, Wei T, Yuan G, Ou H, Yan J, Yi X, Wang J and Li J 2018 Materials 11 2464
[72] Ren F, Liu B Y, Chen Z L, Yin Y, Sun J Y, Zhang S, Jiang B, Liu B Z, Liu Z T, Wang J W, Liang M, Yuan G D, Yan J C, Wei T B, Yi X Y, Wang J X, Zhang Y, Li J M, Gao P, Liu Z F and Liu Z Q 2021 Sci. Adv. 7 eabf5001
[73] Xu Y, Cao B, Li Z, Cai D, Zhang Y, Ren G, Wang J, Shi L, Wang C and Xu K 2017 ACS Appl. Mater. Inter. 9 44001
[74] Liu Y, Xu Y, Cao B, Li Z, Zhao E, Yang S, Wang C, Wang J and Xu K 2019 Phys. Status Solidi A 216 1801027
[75] Zhou H, Xu Y, Chen X, Liu Y, Cao B, Yin W J, Wang C and Xu K 2020 J. Alloys Compd. 844 155870
[76] Xiong X, Xu Y, Zheng S, Liu T, Su X, Cao B, Wang C and Xu K 2020 Mater. Res. Express 7 025039
[77] Yamada A, Ho K P, Maruyama T and Akimoto K 1999 Appl. Phys. A 69 89
[78] Gupta P, Rahman A A, Subramanian S, Gupta S, Thamizhavel A, Orlova T, Rouvimov S, Vishwanath S, Protasenko V, Laskar M R, Xing H G, Jena D and Bhattacharya A 2016 Sci. Rep. 6 23708
[79] Chen Y, Shi Z M, Zhang S L, Ben J W, Jiang K, Zang H, Jia Y P, Lu W, Li D B and Sun X J 2022 Adv. Electron. Mater. 8 2100759
[80] Chen Y, Zang H, Zhang S L, Shi Z M, Ben J W, Jiang K, Jia Y P, Liu M R, Li D B and Sun X J 2022 ACS Appl. Mater. Inter. 14 37947
[81] Yoo H, Chung K, Choi Y S, Kang C S, Oh K H, Kim M and Yi G C 2012 Adv. Mater. 24 515
[82] Al Balushi Z Y, Miyagi T, Lin Y C, Wang K, Calderin L, Bhimanapati G, Redwing J M and Robinson J A 2015 Surf. Sci. 634 81
[83] Lee J Y, Lee J H, Kim M J, Dash J K, Lee C H, Joshi R, Lee S, Hone J, Soon A and Lee G H 2017 Carbon 115 147
[84] Kong W, Li H, Qiao K, Kim Y, Lee K, Nie Y, Lee D, Osadchy T, Molnar R J and Gaskill D K 2018 Nat. Mater. 17 999
[85] Jeong J, Wang Q, Cha J, Jin D K, Shin D H, Kwon S, Kang B K, Jang J H, Yang W S and Choi Y S 2020 Sci. Adv. 6 eaaz5180
[86] Qiao K, Liu Y, Kim C, Molnar R J, Osadchy T, Li W, Sun X, Li H, Myers-Ward R L and Lee D 2021 Nano Lett. 21 4013
[87] Qu Y, Xu Y, Cao B, Wang Y, Wang J, Shi L and Xu K 2022 ACS Appl. Mater. Inter. 14 2263
[88] Han N, Cuong T V, Han M, Ryu B D, Chandramohan S, Park J B, Kang J H, Park Y J, Ko K B, Kim H Y, Kim H K, Ryu J H, Katharria Y S, Choi C J and Hong C H 2013 Nat. Commun. 4 1452
[89] Xu Y, Cao B, He S, Qi L, Li Z, Cai D, Zhang Y, Ren G, Wang J and Wang C 2017 Appl. Phys. Lett. 111 102105
[90] Xu Y, Cao B, Li Z, Zheng S, Cai D, Wang M, Zhang Y, Wang J, Wang C and Xu K 2019 CrystEngComm 21 6109
[91] Zheleva T S, Nam O H, Bremser M D and Davis R F 1997 Appl. Phys. Lett. 71 2472
[92] Yun F, Fu Y, Moon Y T, Ozgur U, Xie J Q, Dogan S, Morkoc H, Inoki C K, Kuan T S, Zhou L and Smith D J 2005 Phys. Status Solidi A 202 749
[93] Engl K, Beer M, Zweck J, Miller S, Bader S, Lugauer H, Brüderl G, Lell A and Härle V 2003 Microsc. Microanal. 9 70
[94] Einfeldt S, Roskowski A M, Preble E A and Davis R F 2002 Appl. Phys. Lett. 80 953
[95] Romanov A E, Fini P and Speck J S 2003 J. Appl. Phys. 93 106
[96] Yang G, Chen P, Wu Z, Yu Z, Zhao H, Liu B, Hua X, Xie Z, Xiu X and Han P 2012 J. Mater. Sci. Mater. Electron. 23 1224
[97] Heilmann M, Sarau G, Göbelt M, Latzel M, Sadhujan S, Tessarek C and Christiansen S 2015 Cryst. Growth Des. 15 2079
[98] Liu Y, Xu Y, Cao B, Li Z, Zhao E, Yang S, Wang C, Wang J and Xu K 2020 J. Cryst. Growth 536 125588
[99] Chung K, Oh H, Jo J, Lee K, Kim M and Yi G C 2017 NPG Asia Mater. 9 e410
[100] Yoo H, Chung K, Park S I, Kim M and Yi G C 2013 Appl. Phys. Lett. 102 051908
[101] Yoo H, Chung K, Choi Y S, Kang C S, Oh K H, Kim M and Yi G C 2012 Adv. Mater. 24 515
[102] Zhang Y C, Su K, Guo R, Xu S R, Chen D Z, Zhu J D, Bao W M, Zhang J C, Ning J and Hao Y 2019 Phys. Status Solidi-R 13 1900167
[103] Chen Z L, Zhang X, Dou Z P, Wei T B, Liu Z Q, Qi Y, Ci H N, Wang Y Y, Li Y, Chang H L, Yan J C, Yang S Y, Zhang Y F, Wang J X, Gao P, Li J M and Liu Z F 2018 Adv. Mater. 30 1801608
[104] Chang H L, Liu B Y, Liang D D, Gao Y Q, Yan J C, Liu Z T, Liu Z Q, Wang J X, Li J M, Gao P and Wei T B 2020 Appl. Phys. Lett. 117 181103
[105] Qiao K, Liu Y P, Kim C, Molnar R J, Osadchy T, Li W H, Sun X C, Li H S, Myers-Ward R L, Lee D, Subramanian S, Kim H, Lu K Y, Robinson J A, Kong W and Kim J 2021 Nano Lett. 21 4013
[106] Wang Y Y, Yang S Y, Chang H L, Li W J, Chen X F, Hou R, Yan J C, Yi X Y, Wang J X and Wei T B 2020 Appl. Sur. Sci. 520 146358
[107] Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W and Sadana D K 2014 Nat. Commun. 5 4836
[108] Zhang L, Li X, Shao Y, Yu J, Wu Y, Hao X, Yin Z, Dai Y, Tian Y and Huo Q 2015 ACS Appl. Mater. Inter. 7 4504
[109] Makimoto T, Kumakura K, Kobayashi Y, Akasaka T and Yamamoto H 2012 Appl. Phys. Express 5 072102
[110] Zeng Y, Ning J, Zhang J, Jia Y, Yan C, Wang B and Wang D 2020 Appl. Sci. 10 8814
[111] Harima H 2002 J. Phys.: Condens. Matter 14 R967
[112] He G, Qin F, Xu C, Wang C, Xu Y, Cao B and Xu K 2020 J. Mater. Sci. Technol. 53 140
[113] Hiroki M, Kumakura K and Yamamoto H 2017 Phys. Status Solidi A 214 1600845
[114] Hiroki M, Kumakura K, Kobayashi Y, Akasaka T, Makimoto T and Yamamoto H 2014 Appl. Phys. Lett. 105 193509
[115] Glavin N R, Chabak K D, Heller E R, Moore E A, Prusnick T A, Maruyama B, Walker D E, Dorsey D L, Paduano Q and Snure M 2017 Adv. Mater. 29 1701838
[116] Liu D, Hu L, Yang X, Zhang Z, Yu H, Zheng F, Feng Y, Wei J, Cai Z, Chen Z, Ma C, Xu F, Wang X, Ge W, Liu K, Huang B and Shen B 2022 Adv. Funct. Mater. 32 2113211
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[3] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[4] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[5] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[6] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[7] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[8] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[9] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[10] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[11] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[12] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[13] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[14] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[15] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
No Suggested Reading articles found!