Special Issue:
SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials
|
SPECIAL TOPIC—Superconductivity in vanadium-based kagome materials |
Prev
Next
|
|
|
Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5 |
Linwei Huai(淮琳崴)1,†, Yang Luo(罗洋)1,†, Samuel M. L. Teicher2, Brenden R. Ortiz2, Kaize Wang(王铠泽)1, Shuting Peng(彭舒婷)1, Zhiyuan Wei(魏志远)1, Jianchang Shen(沈建昌)1, Bingqian Wang(王冰倩)1, Yu Miao(缪宇)1, Xiupeng Sun(孙秀鹏)1, Zhipeng Ou(欧志鹏)1, Stephen D. Wilson2, and Junfeng He(何俊峰)1,‡ |
1 CAS Key Laboratory of Strongly-coupled Quantum Matter Physics and Department of Physics, University of Science and Technology of China, Hefei 230026, China; 2 Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA |
|
|
Abstract The two-dimensional (2D) kagome superconductor CsV3Sb5 has attracted much recent attention due to the coexistence of superconductivity, charge orders, topology and kagome physics, which manifest themselves as distinct electronic structures in both bulk and surface states of the material. An interesting next step is to manipulate the electronic states in this system. Here, we report angle-resolved photoemission spectroscopy (ARPES) evidence for a surface-induced orbital-selective band reconstruction in CsV3Sb5. A significant energy shift of the electron-like band around Γ and a moderate energy shift of the hole-like band around M are observed as a function of time. This evolution is reproduced in a much shorter time scale by in-situ annealing of the CsV3Sb5 sample. Orbital-resolved density functional theory (DFT) calculations reveal that the momentum-dependent band reconstruction is associated with different orbitals for the bands around Γ and M, and the time-dependent evolution points to the change of sample surface that is likely caused by the formation of Cs vacancies on the surface. Our results indicate the possibility of orbital-selective control of the band structure via surface modification, which may open a new avenue for manipulating exotic phenomena in this material system, including superconductivity.
|
Received: 02 December 2021
Revised: 04 January 2022
Accepted manuscript online:
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
Fund: The work at University of Science and Technology of China (USTC) was supported by the Fundamental Research Funds for the Central Universities (Grant Nos.WK3510000008 and WK3510000012) and USTC start-up fund.Work at UC Santa Barbara was supported by the UC Santa Barbara NSF Quantum Foundry funded via the Q-AMASE-i program under award DMR-1906325.This research made use of the shared facilities of the NSF Materials Research Science and Engineering Center at UC Santa Barbara (DMR-1720256).B.R.O.acknowledges support from the California NanoSystems Institute through the Elings Fellowship program.S.M.L.T has been supported by the National Science Foundation Graduate Research Fellowship Program under Grant No.DGE-1650114. |
Corresponding Authors:
Junfeng He,E-mail:jfhe@ustc.edu.cn
E-mail: jfhe@ustc.edu.cn
|
About author: 2022-1-27 |
Cite this article:
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰) Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5 2022 Chin. Phys. B 31 057403
|
[1] Guo H M and Franz M T 2009 Phys. Rev. B 80 113102 [2] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004 [3] Hermele M, Ran Y, Lee P A and Wen X G 2008 Phys. Rev. B 77 224413 [4] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 [5] Yu S L and Li J X 2012 Phys. Rev. B 85 144402 [6] Mielke III C, Qin Y, Yin J X, Nakamura H, Das D, Guo K, Khasanov R, Chang J, Wang Z Q, Jia S, Nakatsuji S, Amato A, Luetkens H, Xu G, Hasan M Z and Guguchia Z 2021 Phys. Rev. Mater. 5 034803 [7] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [8] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801 [9] Yin Q, Tu Z, Gong C, Fu Y, Yan S and Lei H 2021 Chin. Phys. Lett. 38 037403 [10] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [11] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645 [12] Ni S, Ma S, Zhang Y, Yuan J, Yang H, Lu Z, Wang N, Sun J, Zhao Z, Li D, Liu S, Zhang H, Chen H, Jin K, Cheng J, Yu L, Zhou F, Dong X, Hu J, Gao H J and Zhao Z 2021 Chin. Phys. Lett. 38 057403 [13] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001 [14] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y and Yuan H 2021 Sci. China Phys. Mech. Astron. 64 107462 [15] Song Y, Ying T, Chen X, Han X, Wu X, Schnyder A P, Huang Y, Guo J and Chen X 2021 Phys. Rev. Lett. 127 237001 [16] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216 [17] Li H X, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X 11 031050 [18] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026 [19] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R and Wilson S D 2021 Phys. Rev. X 11 041030 [20] Song D W, Zheng L X, Yu F H, Li J, Nie L P, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Sun K L, Liu K, Luo X G, Wang Z Y, Ying J J, Wan X G, Wu T and Chen X H 2022 Sci. China Phys. Mech. Astron. 65 247462 [21] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Geng L, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222 [22] Fu Y, Zhao N, Chen Z, Yin Q, Tu Z, Gong C, Xi C, Zhu X, Sun Y, Liu K and Lei H 2021 Phys. Rev. Lett. 127 207002 [23] Hu Y, Teicher S M L, Ortiz B R, Luo Y, Peng S, Huai L, Ma J Z, Plub N C, Wilson S D, He J F and Shi M 2022 Science Bulletin 67 495 [24] Cai Y, Wang Y, Hao Z, Liu Y, Ma X M, Shen Z, Jiang Z, Yang Y, Liu W, Jiang Q, Liu Z, Ye M, Shen D, Sun Z, Chen J, Wang L, Liu C, Lin J, Wang J, Huang B, Mei J W and Chen C 2021 arXiv:2109.12778 [cond-mat.str-el] [25] Hu Y, Wu X, Ortiz B R, Ju S, Han X, Ma J Z, Plumb N C, Radovic M, Thomale R, Wilson S D, Schnyder A P and Shi M 2021 arXiv:2106.05922 [cond-mat.supr-con] [26] Luo H, Gao Q, Liu H, Gu Y, Wu D, Yi C, Jia J, Wu S, Luo X, Xu Y, Zhao L, Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z and Zhou X J 2022 Nat. Commun. 13 273 [27] Kang M, Fang S, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Sante D D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys. 18 301 [28] Wang Z, Ma S, Zhang Y, Yang H, Zhao Z, Ou Y, Zhu Y, Ni S, Lu Z, Chen H, Jiang K, Yu L, Zhang Y, Dong X, Hu J, Gao H J and Zhao Z 2021 arXiv:2104.05556 [cond-mat.supr-con] [29] Liu Z, Zhao N, Yin Q, Gong C, Tu Z, Li M, Song W, Liu Z, Shen D, Huang Y, Liu K, Lei H and Wang S 2021 Phys. Rev. X 11 041010 [30] Cho S, Ma H, Xia W, Yang Y, Liu Z, Huang Z, Jiang Z, Lu X, Liu J, Liu Z, Li J, Wang J, Liu Y, Jia J, Guo Y, Liu J and Shen D 2021 Phys. Rev. Lett. 127 236401 [31] Lou R, Fedorov A, Yin Q, Kuibarov A, Tu Z, Gong C, Schwier E F, Büchner B, Lei H and Borisenko S 2022 Phys. Rev. Lett. 128 036402 [32] Hao Z, Cai Y, Liu Y, Wang Y, Sui X, Ma X M, Shen Z, Jiang Z, Yang Y, Liu W, Jiang Q, Liu Z, Ye M, Shen D, Liu Y, Cui S, Chen J, Wang L, Liu C, Lin J, Wang J, Huang B, Mei J W and Chen C 2021 arXiv:2111.02639 [cond-mat.str-el] [33] Yu J, Xu Z, Xiao K, Yuan Y, Yin Q, Hu Z, Gong C, Guo Y, Tu Z, Tang P, Lei H, Xue Q K and Li W 2022 Nano Lett. 22 918 [34] LaBollita H and Botana A S 2021 Phys. Rev. B 104 205129 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|