Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057403    DOI: 10.1088/1674-1056/ac4f50
Special Issue: SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials
SPECIAL TOPIC—Superconductivity in vanadium-based kagome materials Prev   Next  

Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5

Linwei Huai(淮琳崴)1,†, Yang Luo(罗洋)1,†, Samuel M. L. Teicher2, Brenden R. Ortiz2, Kaize Wang(王铠泽)1, Shuting Peng(彭舒婷)1, Zhiyuan Wei(魏志远)1, Jianchang Shen(沈建昌)1, Bingqian Wang(王冰倩)1, Yu Miao(缪宇)1, Xiupeng Sun(孙秀鹏)1, Zhipeng Ou(欧志鹏)1, Stephen D. Wilson2, and Junfeng He(何俊峰)1,‡
1 CAS Key Laboratory of Strongly-coupled Quantum Matter Physics and Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
Abstract  The two-dimensional (2D) kagome superconductor CsV3Sb5 has attracted much recent attention due to the coexistence of superconductivity, charge orders, topology and kagome physics, which manifest themselves as distinct electronic structures in both bulk and surface states of the material. An interesting next step is to manipulate the electronic states in this system. Here, we report angle-resolved photoemission spectroscopy (ARPES) evidence for a surface-induced orbital-selective band reconstruction in CsV3Sb5. A significant energy shift of the electron-like band around Γ and a moderate energy shift of the hole-like band around M are observed as a function of time. This evolution is reproduced in a much shorter time scale by in-situ annealing of the CsV3Sb5 sample. Orbital-resolved density functional theory (DFT) calculations reveal that the momentum-dependent band reconstruction is associated with different orbitals for the bands around Γ and M, and the time-dependent evolution points to the change of sample surface that is likely caused by the formation of Cs vacancies on the surface. Our results indicate the possibility of orbital-selective control of the band structure via surface modification, which may open a new avenue for manipulating exotic phenomena in this material system, including superconductivity.
Keywords:  photoemission      kagome superconductor      band structure  
Received:  02 December 2021      Revised:  04 January 2022      Accepted manuscript online: 
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.70.-b (Superconducting materials other than cuprates)  
  79.60.-i (Photoemission and photoelectron spectra)  
  74.20.Pq (Electronic structure calculations)  
Fund: The work at University of Science and Technology of China (USTC) was supported by the Fundamental Research Funds for the Central Universities (Grant Nos.WK3510000008 and WK3510000012) and USTC start-up fund.Work at UC Santa Barbara was supported by the UC Santa Barbara NSF Quantum Foundry funded via the Q-AMASE-i program under award DMR-1906325.This research made use of the shared facilities of the NSF Materials Research Science and Engineering Center at UC Santa Barbara (DMR-1720256).B.R.O.acknowledges support from the California NanoSystems Institute through the Elings Fellowship program.S.M.L.T has been supported by the National Science Foundation Graduate Research Fellowship Program under Grant No.DGE-1650114.
Corresponding Authors:  Junfeng He,E-mail:jfhe@ustc.edu.cn     E-mail:  jfhe@ustc.edu.cn
About author:  2022-1-27

Cite this article: 

Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰) Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5 2022 Chin. Phys. B 31 057403

[1] Guo H M and Franz M T 2009 Phys. Rev. B 80 113102
[2] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004
[3] Hermele M, Ran Y, Lee P A and Wen X G 2008 Phys. Rev. B 77 224413
[4] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[5] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[6] Mielke III C, Qin Y, Yin J X, Nakamura H, Das D, Guo K, Khasanov R, Chang J, Wang Z Q, Jia S, Nakatsuji S, Amato A, Luetkens H, Xu G, Hasan M Z and Guguchia Z 2021 Phys. Rev. Mater. 5 034803
[7] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[8] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[9] Yin Q, Tu Z, Gong C, Fu Y, Yan S and Lei H 2021 Chin. Phys. Lett. 38 037403
[10] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[11] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645
[12] Ni S, Ma S, Zhang Y, Yuan J, Yang H, Lu Z, Wang N, Sun J, Zhao Z, Li D, Liu S, Zhang H, Chen H, Jin K, Cheng J, Yu L, Zhou F, Dong X, Hu J, Gao H J and Zhao Z 2021 Chin. Phys. Lett. 38 057403
[13] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[14] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y and Yuan H 2021 Sci. China Phys. Mech. Astron. 64 107462
[15] Song Y, Ying T, Chen X, Han X, Wu X, Schnyder A P, Huang Y, Guo J and Chen X 2021 Phys. Rev. Lett. 127 237001
[16] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[17] Li H X, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X 11 031050
[18] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026
[19] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R and Wilson S D 2021 Phys. Rev. X 11 041030
[20] Song D W, Zheng L X, Yu F H, Li J, Nie L P, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Sun K L, Liu K, Luo X G, Wang Z Y, Ying J J, Wan X G, Wu T and Chen X H 2022 Sci. China Phys. Mech. Astron. 65 247462
[21] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Geng L, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222
[22] Fu Y, Zhao N, Chen Z, Yin Q, Tu Z, Gong C, Xi C, Zhu X, Sun Y, Liu K and Lei H 2021 Phys. Rev. Lett. 127 207002
[23] Hu Y, Teicher S M L, Ortiz B R, Luo Y, Peng S, Huai L, Ma J Z, Plub N C, Wilson S D, He J F and Shi M 2022 Science Bulletin 67 495
[24] Cai Y, Wang Y, Hao Z, Liu Y, Ma X M, Shen Z, Jiang Z, Yang Y, Liu W, Jiang Q, Liu Z, Ye M, Shen D, Sun Z, Chen J, Wang L, Liu C, Lin J, Wang J, Huang B, Mei J W and Chen C 2021 arXiv:2109.12778 [cond-mat.str-el]
[25] Hu Y, Wu X, Ortiz B R, Ju S, Han X, Ma J Z, Plumb N C, Radovic M, Thomale R, Wilson S D, Schnyder A P and Shi M 2021 arXiv:2106.05922 [cond-mat.supr-con]
[26] Luo H, Gao Q, Liu H, Gu Y, Wu D, Yi C, Jia J, Wu S, Luo X, Xu Y, Zhao L, Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z and Zhou X J 2022 Nat. Commun. 13 273
[27] Kang M, Fang S, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Sante D D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys. 18 301
[28] Wang Z, Ma S, Zhang Y, Yang H, Zhao Z, Ou Y, Zhu Y, Ni S, Lu Z, Chen H, Jiang K, Yu L, Zhang Y, Dong X, Hu J, Gao H J and Zhao Z 2021 arXiv:2104.05556 [cond-mat.supr-con]
[29] Liu Z, Zhao N, Yin Q, Gong C, Tu Z, Li M, Song W, Liu Z, Shen D, Huang Y, Liu K, Lei H and Wang S 2021 Phys. Rev. X 11 041010
[30] Cho S, Ma H, Xia W, Yang Y, Liu Z, Huang Z, Jiang Z, Lu X, Liu J, Liu Z, Li J, Wang J, Liu Y, Jia J, Guo Y, Liu J and Shen D 2021 Phys. Rev. Lett. 127 236401
[31] Lou R, Fedorov A, Yin Q, Kuibarov A, Tu Z, Gong C, Schwier E F, Büchner B, Lei H and Borisenko S 2022 Phys. Rev. Lett. 128 036402
[32] Hao Z, Cai Y, Liu Y, Wang Y, Sui X, Ma X M, Shen Z, Jiang Z, Yang Y, Liu W, Jiang Q, Liu Z, Ye M, Shen D, Liu Y, Cui S, Chen J, Wang L, Liu C, Lin J, Wang J, Huang B, Mei J W and Chen C 2021 arXiv:2111.02639 [cond-mat.str-el]
[33] Yu J, Xu Z, Xiao K, Yuan Y, Yin Q, Hu Z, Gong C, Guo Y, Tu Z, Tang P, Lei H, Xue Q K and Li W 2022 Nano Lett. 22 918
[34] LaBollita H and Botana A S 2021 Phys. Rev. B 104 205129
[1] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[2] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[3] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[4] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[5] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[6] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[7] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[8] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[9] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[10] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[11] Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(1): 017405.
[12] Evolution of superconductivity and charge order in pressurized RbV3Sb5
Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球). Chin. Phys. B, 2022, 31(1): 017404.
[13] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[14] Quantization of the band at the surface of charge density wave material 2H-TaSe2
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才). Chin. Phys. B, 2021, 30(4): 047305.
[15] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
No Suggested Reading articles found!