Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 107302    DOI: 10.1088/1674-1056/ac6164
Special Issue: SPECIAL TOPIC — Fabrication and manipulation of the second-generation quantum systems
SPECIAL TOPIC—Fabrication and manipulation of the second-generation quantum systems Prev   Next  

Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films

Chunli Yao(姚春丽)1, Tingna Shao(邵婷娜)1, Mingrui Liu(刘明睿)1,2, Zitao Zhang(张子涛)1, Weimin Jiang(姜伟民)1, Qiang Zhao(赵强)1, Yujie Qiao(乔宇杰)1, Meihui Chen(陈美慧)1, Xingyu Chen(陈星宇)1, Ruifen Dou(窦瑞芬)1,†, Changmin Xiong(熊昌民)1,‡, and Jiacai Nie(聂家财)1,‡
1. Department of Physics, Beijing Normal University, Beijing 100875, China;
2. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  High-quality Sr2CrWO6 (SCWO) films have been grown on SrTiO3 (STO) substrate by pulsed laser deposition under low oxygen pressure. With decrease of the film thickness, a drastic conductivity increase is observed. The Hall measurements show that the thicker the film, the lower the carrier density. An extrinsic mechanism of charge doping due to the dominance of oxygen vacancies at SCWO/STO interfaces is proposed. The distribution and gradient of carrier concentration in SCWO films are considered to be related to this phenomenon. Resistivity behavior observed in these films is found to follow the variable range hopping model. It is revealed that with increase of the film thickness, the extent of disorder in the lattice increases, which gives a clear evidence of disorder-induced localization charge carriers in these films. Magnetoresistance measurements show that there is a negative magnetoresistance in SCWO films, which is considered to be caused by the magnetic scattering of magnetic elements Cr3+ and W5+. In addition, a sign reversal of anisotropic magnetoresistance (AMR) in SCWO film is observed for the first time, when the temperature varies across a characteristic value, TM. Magnetization—temperature measurements demonstrate that this AMR sign reversal is caused by the direction transition of easy axis of magnetization from the in-plane ferromagnetic order at T > TM to the out-of-plane at T < TM.
Keywords:  Sr2CrWO6/SrTiO3      anisotropic magnetoresistance      sign reversal      resistivity  
Received:  20 January 2022      Revised:  06 March 2022      Accepted manuscript online: 
PACS:  73.25.+i (Surface conductivity and carrier phenomena)  
  68.47.Gh (Oxide surfaces)  
  74.25.F- (Transport properties)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065110, 11974048, and 12074334).
Corresponding Authors:  Ruifen Dou, Changmin Xiong, Jiacai Nie     E-mail:  ruifendou@bnu.edu.cn;cmxiong@bnu.edu.cn;jcnie@bnu.edu.cn

Cite this article: 

Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财) Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films 2022 Chin. Phys. B 31 107302

[1] Zhong W, Au C T and Du Y W 2013 Chin. Phys. B 22 057501
[2] Mtougui S, et al. 2020 Chin. Phys. B 29 056101
[3] Jeng H T and Guo G Y 2003 Phys. Rev. B 67 094438
[4] Ohta I M and Inaguma Y 1996 Mater. Sci. Eng. B 41 55
[5] Kobayashi K I, Kimura T, Tomioka Y, Sawada H and Terakura K 1999 Phys. Rev. B 59 11159
[6] Philipp J B, Reisinger D, Schonecke M, Marx A, Erb A, Alff L and Gross R 2001 Appl. Phys. Lett. 79 3654
[7] Kato H, Okuda T, Okimoto Y and Tomioka Y 2002 Appl. Phys. Lett. 81 328
[8] Asano H, Kozuka N, Tsuzuki A and Matsui M 2004 Appl. Phys. Lett 85 263
[9] Arulraj A, Ramesha K, Gopalakrishnan J and Rao C N R 2000 J. Solid State Chem. 155 233
[10] Philipp J B, Majewski P, Alff L, et al. 2003 Phys. Rev. B 59 144431
[11] Amraoui S, Feraoun A and Kerouad M 2019 J. Phys. Chem. Solid 131 189
[12] Venimadhav A, Sher F, Attfield J P and Blamire M G 2006 Solid State Commun. 138 314
[13] Sheng X, et al. 2020 Chin. Phys. Lett. 37 107504
[14] Eckstein J N, Bozovic I, Donnell J O, Onellion M and Rzchowski M S 1996 Appl. Phys. Lett. 69 1312
[15] Wang B, You L, Ren P, et al. 2013 Nat. Commun. 4 2778
[16] Xu Y and Cai J W 2011 Acta Phys. Sin. 60 117308 (in Chinese)
[17] Gul Q, et al. 2019 Chin. Phys. B 28 077502
[18] Sharma H, Tulapurkar A and Tomy C V 2014 Appl. Phys. Lett. 105 222406
[19] Li M R, Retuerto M, Deng Z, et al. 2015 Angew. Chem. Int. Ed. 54 12069
[20] Arévalo-López A M, McNally G M and Attfield J P 2015 Angew. Chem. Int. Ed. 54 12074
[21] Zhang J, Ji W J, Xu J, et al. 2017 Sci. Adv. 3 e1701473
[22] Fisher B, Chashka K B, Patlagan L and Reisner G M 2005 Phys. Rev. B 71 104428
[23] Philipp J B, Reisinger D, Schonecke M, et al. 2003 J. Appl. Phys. 93 6853
[24] Xue H X, Li C J, Hong Y P, et al. 2017 Phys. Rev. B 96 235310
[25] Shalom M B, Tai C W, Lereah Y, et al. 2009 Phys. Rev. B 80 140403
[26] Okada Y, Fujita T and Kawabe M 1995 Appl. Phys. Lett. 67 676
[27] Yukawa M, Noritake H, Tanaka R and Iida S J 2003 Jpn. J. Appl. Phys. 42 6532
[28] Huang J L, Yau B S, Chen C Y, Lo W T and Lii D F 2001 Ceram Int 27 363
[29] Ohtomo A and Hwang H Y 2004 Nature 427 423
[30] Kalabukhov A, Gunnarsson R, Börjesson J, et al. 2007 Phys. Rev. B 75 121404
[31] Pavlenko N, Kopp T, Tsymbal E Y, Mannhart J and Sawatzky G A 2012 Phys. Rev. B 86 064431
[32] Mott N F and Davis E A 1979 Science 207 4436
[33] Mir F A 2012 Eur. Phys. J. Appl. Phys. 57 20202
[34] Pan Y W, Zhu P W and Wang X 2015 Chin. Phys. B 24 017503
[35] Mott N F 1969 J. Phil. Mag. 19 835
[36] Yin S L, Liang X J and Zhao H W 2013 Chin. Phys. Lett. 30 087305
[37] Egilmez M, Saber M M, Mansour A I, et al. 2008 Appl. Phys. Lett. 93 182505
[38] Zhao S Y, Song Y, Liang H, et al. 2020 Chin. Phys. B 29 077303
[39] Liu Y, Chu W W, Yang J Y, et al. 2018 Phys. Rev. B 98 024425
[1] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[2] On the origin of the anomalous sign reversal in the Hall effect in Nb thin films
Dan Zhou(周丹), Han-Song Zeng(曾寒松), Rujun Tang(汤如俊), Zhihong Hang(杭志宏), Zhiwei Hu(胡志伟), Zixi Pei(裴子玺), and Xinsheng Ling(凌新生). Chin. Phys. B, 2022, 31(3): 037403.
[3] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
[4] Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2021, 30(12): 127302.
[5] Suppression of ion migration in perovskite materials by pulse-voltage method
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达). Chin. Phys. B, 2021, 30(11): 118104.
[6] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[7] Different behavior of upper critical field in Fe1-xSe single crystals
Shunli Ni(倪顺利), Wei Hu(胡卫), Peipei Shen(沈沛沛), Zhongxu Wei(魏忠旭), Shaobo Liu(刘少博), Dong Li(李栋), Jie Yuan(袁洁), Li Yu(俞理), Kui Jin(金魁), Fang Zhou(周放), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2019, 28(12): 127401.
[8] Nonlinear uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2
Hui-Can Mao(毛慧灿), Dong-Liang Gong(龚冬良), Xiao-Yan Ma(马肖燕), Hui-Qian Luo(罗会仟), Yi-Feng Yang(杨义峰), Lei Shan(单磊), Shi-Liang Li(李世亮). Chin. Phys. B, 2018, 27(8): 087402.
[9] General equation describing viscosity of metallic melts under horizontal magnetic field
Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮). Chin. Phys. B, 2017, 26(3): 036601.
[10] Structural, optical, and electrical properties of Cu-doped ZrO2 films prepared by magnetron co-sputtering
Nian-Qi Yao(姚念琦), Zhi-Chao Liu(刘智超), Guang-Rui Gu(顾广瑞), Bao-Jia Wu(吴宝嘉). Chin. Phys. B, 2017, 26(10): 106801.
[11] Manipulating magnetic anisotropies of Co/MgO(001) ultrathin films via oblique deposition
Syed Sheraz Ahmad, Wei He(何为), Jin Tang(汤进), Yong Sheng Zhang(张永圣), Bo Hu(胡泊), Jun Ye(叶军), Qeemat Gul, Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2016, 25(9): 097501.
[12] Magnetoresistivity and filamentary superconductivity in nickel-doped BaFe2As2
Wei Zhang(张威), Yao-Min Dai(戴耀民), Bing Xu(许兵), Run Yang(杨润), Jin-Yun Liu(刘金云), Qiang-Tao Sui(随强涛), Hui-Qian Luo(罗会仟), Rui Zhang(张睿), Xing-Ye Lu(鲁兴业), Hao Yang(杨浩), Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2016, 25(4): 047401.
[13] Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films
Jing Yang(杨静), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Ping Chen(陈平), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Ling-Cong Le(乐伶聪), Xiao-Jing Li(李晓静), Xiao-Guang He(何晓光), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2016, 25(2): 027102.
[14] Low-temperature physical properties and electronic structures of Ni3Sb, Ni5Sb2, NiSb2, and NiSb
Luo Xiao-Ning (罗肖宁), Dong Cheng (董成), Liu Shi-Kai (刘世凯), Zhang Zi-Ping (张子平), Li Ao-Lei (李傲雷), Yang Li-Hong (杨立红), Li Xiao-Chuan (李晓川). Chin. Phys. B, 2015, 24(6): 067201.
[15] Effects of growing conditions on the electric and magnetic properties of strained La2/3Sr1/3MnO3 thin films
Lu Hai-Xia (卢海霞), Wang Jing (王晶), Shen Bao-Gen (沈保根), Sun Ji-Rong (孙继荣). Chin. Phys. B, 2015, 24(2): 027504.
No Suggested Reading articles found!