Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 107201    DOI: 10.1088/1674-1056/ac6866

Observation of quadratic magnetoresistance in twisted double bilayer graphene

Yanbang Chu(褚衍邦)1,2, Le Liu(刘乐)1,2, Yiru Ji(季怡汝)1,2, Jinpeng Tian(田金朋)1,2, Fanfan Wu(吴帆帆)1,2, Jian Tang(汤建)1,2, Yalong Yuan(袁亚龙)1,2, Yanchong Zhao(赵岩翀)1,2, Xiaozhou Zan(昝晓州)1,2, Rong Yang(杨蓉)1,3, Kenji Watanabe4, Takashi Taniguchi5, Dongxia Shi(时东霞)1,2,3,†, Wei Yang(杨威)1,2,3, and Guangyu Zhang(张广宇)1,2,3,‡
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3. Songshan Lake Materials Laboratory, Dongguan 523808, China;
4. Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan;
5. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
Abstract  Magnetoresistance ({MR}) provides rich information about Fermi surface, carrier scatterings, and exotic phases for a given electronic system. Here, we report a study of the magnetoresistance for the metallic states in twisted double bilayer graphene (TDBG). We observe quadratic magnetoresistance in both Moiré valence band (VB) and Moiré conduction band (CB). The scaling analysis shows validity of Kohler's rule in the Moiré valence band. On the other hand, the quadratic magnetoresistance appears near the halo structure in the Moiré conduction band, and it violates Kohler's rule, demonstrating the {MR} scaling related to band structure in TDBG. We also propose an alternative scaling near the halo structure. Further analysis implies that the observed quadratic magnetoresistance and alternative scaling in conduction band are related to the halo boundary. Our results may inspire investigation on {MR} in twisted 2D materials and provide new knowledge for {MR} study in condensed matter physics.
Keywords:  twisted double bilayer graphene      Kohler's rule      magnetoresistance scaling      critical behavior  
Received:  02 March 2022      Revised:  16 April 2022      Accepted manuscript online: 
PACS:  73.43.Qt (Magnetoresistance)  
  72.80.Vp (Electronic transport in graphene)  
  89.75.Da (Systems obeying scaling laws)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309600), the National Natural Science Foundation of China (Grant Nos. 61888102, 11834017, and 12074413), the Strategic Priority Research Program of CAS (Grant Nos. XDB30000000 and XDB33000000), and the Key-Area Research and Development Program of Guangdong Province (Grant No. 2020B0101340001). Growth of hexagonal boron nitride crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan, Grant Number JPMXP0112101001, JSPS KAKENHI (Grant No. JP20H00354) and A3 Foresight by JSPS.
Corresponding Authors:  Wei Yang, Guangyu Zhang     E-mail:;

Cite this article: 

Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇) Observation of quadratic magnetoresistance in twisted double bilayer graphene 2022 Chin. Phys. B 31 107201

[1] Pippard A B 1989 Magnetoresistance in Metals (Cambridge: Cambridge University Press)
[2] Zhang S, Wu Q, Liu Y, et al. 2019 Phys. Rev. B 99 035142
[3] Abrikosov A A 2017 Fundamentals of the Theory of Metals (New York: Courier Dover Publications)
[4] Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press)
[5] Kohler M 1938 Ann. Phys. (Leipzig) 424 211
[6] Kolincio K K, Roman M and Klimczuk T 2020 Phys. Rev. Lett. 125 176601
[7] Chan M K, Veit M J, Dorow C J, et al. 2014 Phys. Rev. Lett. 113 177005
[8] Wang Y L, Thoutam L R, Xiao Z L, et al. 2015 Phys. Rev. B 92 180402
[9] Jo N H, Wu Y, Wang L L, et al. 2017 Phys. Rev. B 96 165145
[10] Forró L, Biljaković K, Cooper J R, et al. 1984 Phys. Rev. B 29 2839
[11] Du J, Lou Z, Zhang S, et al. 2018 Phys. Rev. B 97 245101
[12] Harris J M, Yan Y F, Matl P, et al. 1995 Phys. Rev. Lett. 75 1391
[13] Kontani H 2008 Rep. Prog. Phys. 71 026501
[14] Li X, Sun J, Shahi P, et al. 2018 Proc. Natl. Acad. Sci. USA 115 9935
[15] Knowles P, Yang B, Muramatsu T, et al. 2020 Phys. Rev. Lett. 124 167602
[16] Xu J, Han F, Wang T T, et al. 2021 Phys. Rev. X 11 041029
[17] Hayes I M, McDonald R D, Breznay N P, et al. 2016 Nat. Phys. 12 916
[18] Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80
[19] Lu X, Stepanov P, Yang W, et al. 2019 Nature 574 653
[20] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, et al. 2020 Nature 583 215
[21] Liu X, Hao Z, Khalaf E, et al. 2020 Nature 583 221
[22] Shen C, Chu Y, Wu Q, et al. 2020 Nat. Phys. 16 520
[23] Chen G, Jiang L, Wu S, et al. 2019 Nat. Phys. 15 237
[24] Wang L, Shih E-M, Ghiotto A, et al. 2020 Nat. Mater. 19 861
[25] Cao Y, Fatemi V, Fang S, et al. 2018 Nature 556 43
[26] Yankowitz M, Chen S, Polshyn H, et al. 2019 Science 363 1059
[27] Polshyn H, Zhu J, Kumar M A, et al. 2020 Nature 588 66
[28] Serlin M, Tschirhart C L, Polshyn H, et al. 2020 Science 367 900
[29] Sharpe A L, Fox E J, Barnard A W, et al. 2019 Science 365 605
[30] Shen C, Ying J, Liu L, et al. 2021 Chin. Phys. Lett. 38 047301
[31] Rozen A, Park J M, Zondiner U, et al. 2021 Nature 592 214
[32] Saito Y, Yang F, Ge J, et al. 2021 Nature 592 220
[33] Ghiotto A, Shih E M, Pereira G, et al. 2021 Nature 597 345
[34] Li T, Jiang S, Li L, et al. 2021 Nature 597 350
[35] Chu Y, Liu L, Shen C, et al. 2022 Phys. Rev. B 106 035107
[36] Chu Y, Liu L, Yuan Y, et al. 2020 Chin. Phys. B 29 128104
[37] He M, Li Y, Cai J, et al. 2020 Nat. Phys. 17 26
[38] Kim K, Yankowitz M, Fallahazad B, et al. 2016 Nano Lett. 16 1989
[39] Purdie D G, Pugno N M, Taniguchi T, et al. 2018 Nat. Commun. 9 5387
[40] Liu L, Zhang S, Chu Y, et al. 2021 arXiv:2112.08600 [cond-mat.mes-hall]
[41] Ma J J, Wang Z Y, Xu S G, et al. 2022 Chin. Phys. Lett. 39 047403
[42] Li X, Wu F and Sarma S D 2020 Phys. Rev. B 101 245436
[43] Rubio-Verdú C, Turkel S, Song Y, et al. 2022 Nat. Phys. 18 196
[1] Critical behavior in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Tina Raoufi, Yinina Ma(马怡妮娜), Young Sun(孙阳). Chin. Phys. B, 2020, 29(6): 067503.
[2] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[3] Phase transition and critical behavior ofspin-orbital coupled spinel ZnV2O4
Li Wang(王理), Rong-juan Wang(王蓉娟), Yuan-yuan Zhu(朱媛媛), Zhi-hong Lu(卢志红),Rui Xiong(熊锐), Yong Liu(刘雍), Jing Shi(石兢). Chin. Phys. B, 2016, 25(1): 016802.
[4] Magnetic transition and large reversible magnetocaloric effect in EuCu1.75P2 compound
Huo De-Xuan (霍德璇), Liao Luo-Bing (廖罗兵), Li Ling-Wei (李领伟), Li Miao (李妙), Qian Zheng-Hong (钱正洪 ). Chin. Phys. B, 2013, 22(2): 027502.
No Suggested Reading articles found!