Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067403    DOI: 10.1088/1674-1056/ac0036
RAPID COMMUNICATION Prev   Next  

Unusual electronic structure of Dirac material BaMnSb2 revealed by angle-resolved photoemission spectroscopy

Hongtao Rong(戎洪涛)1,2,†, Liqin Zhou(周丽琴)1,2,†, Junbao He(何俊宝)1,2,3,†, Chunyao Song(宋春尧)1,2,†, Yu Xu(徐煜)1,2, Yongqing Cai(蔡永青)1,2, Cong Li(李聪)1,2, Qingyan Wang(王庆艳)1,2, Lin Zhao(赵林)1,2,4, Guodong Liu(刘国东)1,2,4, Zuyan Xu(许祖彦)5, Genfu Chen(陈根富)1,2, Hongming Weng(翁红明)1,2, and Xingjiang Zhou(周兴江)1,2,4,6,‡
1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
6 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  High resolution angle resolved photoemission measurements and band structure calculations are carried out to study the electronic structure of BaMnSb2. All the observed bands are nearly linear that extend to a wide energy range. The measured Fermi surface mainly consists of one hole pocket around Γ and a strong spot at Y which are formed from the crossing points of the linear bands. The measured electronic structure of BaMnSb2 is unusual and deviates strongly from the band structure calculations. These results will stimulate further efforts to theoretically understand the electronic structure of BaMnSb2 and search for novel properties in this Dirac material.
Keywords:  ARPES      BaMnSb2      Dirac material      magnetic topological material  
Received:  07 May 2021      Revised:  07 May 2021      Accepted manuscript online:  12 May 2021
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300600, 2018YFA0305602, 2016YFA0300300, and 2017YFA0302900), the National Natural Science Foundation of China (Grant Nos. 11974404, 11888101, 11922414, and 11404175), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB33000000 and XDB25000000), the Youth Innovation Promotion Association of CAS (Grant No. 2017013), and the Natural Science Foundation of Henan Province, China (Grant Nos. 182300410274 and 202300410296). The theoretical calculations are supported by the National Natural Science Foundation of China (Grant Nos. 11674369, 11865019, and 11925408), the Beijing Natural Science Foundation, China (Grant No. Z180008), Beijing Municipal Science and Technology Commission, China (Grant No. Z191100007219013), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300600 and 2018YFA0305700), the K. C. Wong Education Foundation (Grant No. GJTD-2018-01), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000).
Corresponding Authors:  Xingjiang Zhou     E-mail:  xjzhou@iphy.ac.cn

Cite this article: 

Hongtao Rong(戎洪涛), Liqin Zhou(周丽琴), Junbao He(何俊宝), Chunyao Song(宋春尧), Yu Xu(徐煜), Yongqing Cai(蔡永青), Cong Li(李聪), Qingyan Wang(王庆艳), Lin Zhao(赵林), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Genfu Chen(陈根富), Hongming Weng(翁红明), and Xingjiang Zhou(周兴江) Unusual electronic structure of Dirac material BaMnSb2 revealed by angle-resolved photoemission spectroscopy 2021 Chin. Phys. B 30 067403

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[4] Fang C, Weng H M, Dai X and Fang Z 2016 Chin. Phys. B 25 117106
[5] Yan B H and Felser C 2017 Annu. Rev. Condens. Matter. Phys. 8 337
[6] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[7] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[8] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[9] Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[10] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[11] Chang C Z, Zhang J S, Feng X, et al. 2013 Science 340 167
[12] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416
[13] Gong Y, Guo J W, Li J H, et al. 2019 Chin. Phys. Lett. 36 076801
[14] Zhang D Q, Shi M J, Zhu T S, et al. 2019 Phys. Rev. Lett. 122 206401
[15] Xu Y F, Elcoro L, Song Z D, et al. 2020 Nature 586 702
[16] Park J, Lee G, Wolff-Fabris F, et al. 2011 Phys. Rev. Lett. 107 126402
[17] Feng Y, Wang Z J, Chen C Y, et al. 2014 Sci. Rep. 4 5385
[18] Kealhofer R, Jang S, Griffin S M, et al. 2018 Phys. Rev. B 97 045109
[19] Ramankutty S V, Henke J, Schiphorst A, et al. 2018 SciPost Phys. 4 010
[20] Ryu H, Park S Y, Li L J, et al. 2018 Sci. Rep. 8 15322
[21] Sakai H, Fujimura H, Sakuragi S, et al. 2020 Phys. Rev. B 101 081104(R)
[22] Borisenko S, Evtushinsky D, Gibson Q, et al. 2019 Nat. Commun. 10 3424
[23] Soh J R, Manuel P, Schröter N M B, et al. 2019 Phys. Rev. B 100 174406
[24] Liu J Y, Yu J, Ning J L, et al. 2019 arXiv: 1907.06318
[25] Liu J Y, Hu J, Zhang Q, et al. 2017 Nat. Mat. 16 905
[26] Masuda H, Sakai H, Tokunaga M, et al. 2016 Sci. Adv. 2 e1501117
[27] Rong H T, Zhou L Q, He J B, et al. 2021 arXiv: 2105.00444
[28] Liu J Y, Hu J, Cao H B, et al. 2016 Sci. Rep. 6 30525
[29] Huang S L, Kim J, Shelton W A, et al. 2017 Proc. Natl. Acad. Sci. 114 6256
[30] Yu J B and Liu C X 2020 Nat. Commun. 11 2290
[31] He J B, Fu Y, Zhao L X, et al. 2017 Phys. Rev. B 95 045128
[32] Liu G D, Wang G L, Zhu Y, et al. 2008 Rev. Sci. Instrum. 79 023105
[33] Zhou X J, He S L, Liu G D, et al. 2018 Rep. Prog. Phys. 81 062101
[34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Mostofi A A, Yates J R, Pizzi G, et al. 2014 Comput. Phys. Commun. 185 2309
[37] Wu Q S, Zhang S N, Song H F, et al. 2018 Comput. Phys. Commun. 224 405
[1] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[2] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[3] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[4] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[5] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[6] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[7] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[8] Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2-xPbx)Sr2CaCu2O8+δ superconductors
Jing Liu(刘静), Lin Zhao(赵林), Qiang Gao(高强), Ping Ai(艾平), Lu Zhang(张璐), Tao Xie(谢涛), Jian-Wei Huang(黄建伟), Ying Ding(丁颖), Cheng Hu(胡成), Hong-Tao Yan(闫洪涛), Chun-Yao Song(宋春尧), Yu Xu(徐煜), Cong Li(李聪), Yong-Qing Cai(蔡永青), Hong-Tao Rong(戎洪涛), Ding-Song Wu(吴定松), Guo-Dong Liu(刘国东), Qing-Yan Wang(王庆艳), Yuan Huang(黄元), Feng-Feng Zhang(张丰丰), Feng Yang(杨峰), Qin-Jun Peng(彭钦军), Shi-Liang Li(李世亮), Huai-Xin Yang(杨槐馨), Jian-Qi Li(李建奇), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2019, 28(7): 077403.
[9] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
[10] Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors
Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪). Chin. Phys. B, 2019, 28(3): 037103.
[11] Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS
Guang-Hao Hong(洪光昊), Cheng-Wei Wang(王成玮), Juan Jiang(姜娟), Cheng Chen(陈成), Sheng-Tao Cui(崔胜涛), Hai-Feng Yang(杨海峰), Ai-Ji Liang(梁爱基), Shuai Liu(刘帅), Yang-Yang Lv(吕洋洋), Jian Zhou(周健), Yan-Bin Chen(陈延彬), Shu-Hua Yao(姚淑华), Ming-Hui Lu(卢明辉), Yan-Feng Chen(陈延峰), Mei-Xiao Wang(王美晓), Le-Xian Yang(杨乐仙), Zhong-Kai Liu(柳仲楷), Yu-Lin Chen(陈宇林). Chin. Phys. B, 2018, 27(1): 017105.
[12] Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy
Bing Shen(沈兵), Li Yu(俞理), Kai Liu(刘凯), Shou-Peng Lyu(吕守鹏), Xiao-Wen Jia(贾小文), E D Bauer, J D Thompson, Yan Zhang(张艳), Chen-Lu Wang(王晨露), Cheng Hu(胡成), Ying Ding(丁颖), Xuan Sun(孙璇), Yong Hu(胡勇), Jing Liu(刘静), Qiang Gao(高强), Lin Zhao(赵林), Guo-Dong Liu(刘国东), Zu-Yan Xu(许祖彦), Chuang-Tian Chen(陈创天), Zhong-Yi Lu(卢仲毅), X J Zhou(周兴江). Chin. Phys. B, 2017, 26(7): 077401.
[13] Electronic structure and nematic phase transition in superconducting multiple-layer FeSe films grown by pulsed laser deposition method
Bing Shen(沈兵), Zhong-Pei Feng(冯中沛), Jian-Wei Huang(黄建伟), Yong Hu(胡勇), Qiang Gao(高强), Cong Li(李聪), Yu Xu(徐煜), Guo-Dong Liu(刘国东), Li Yu(俞理), Lin Zhao(赵林), Kui Jin(金魁), X J Zhou(周兴江). Chin. Phys. B, 2017, 26(7): 077402.
No Suggested Reading articles found!