Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054215    DOI: 10.1088/1674-1056/ac3a63
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber

Yongtao Li(李永涛)1, Jiesong Deng(邓洁松)2, Zhen Yang(阳圳)2, Hui Zou(邹辉)2,3,†, and Yuzhou Ma(马玉周)4
1 Academic Affairs Office, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 State Key Laboratory of Luminescence and Applications, Changchun 130033, China;
4 Beijing Times Photoelectric Technology Co., Ltd, Beijing 100094, China
Abstract  A novel ultra-broadband polarization splitter based on a dual-core photonic crystal fiber (DC-PCF) is designed. The full-vector finite element method and coupled-mode theory are employed to investigate the characteristics of the polarization splitter. According to the numerical results, a graphene-filled layer not only broadens the working bandwidth but also reduces the size of the polarization splitter. Furthermore, the fluorine-doped region and the germanium-doped region can broaden the bandwidth. Also, the 4.78 mm long polarization splitter can achieve an extinction ratio of -98.6 dB at a wavelength of 1550 nm. When extinction ratio is less than -20 dB, the range of the wavelength is 1027 nm-1723 nm with a bandwidth of 696 nm. Overall, the polarization splitter can be applied to all-optical network communication systems in the infrared and near-infrared wavelength range.
Keywords:  photonic crystal fiber      polarization splitter      broadband bandwidth      extinction ratio  
Received:  28 July 2021      Revised:  27 October 2021      Accepted manuscript online: 
PACS:  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  42.68.Mj (Scattering, polarization)  
Fund: Project supported by the State Key Laboratory of Luminescence and Applications (Grant No.SKLA-2020-01).
Corresponding Authors:  Hui Zou,E-mail:zouhui1010@163.com     E-mail:  zouhui1010@163.com
About author:  2021-11-17

Cite this article: 

Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周) Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber 2022 Chin. Phys. B 31 054215

[1] Florous N J, Saitoh K and Koshiba M 2006 IEEE Photon. Technol. Lett. 18 1231
[2] Lu W L, Lou S Q, Wang X, Wang L W and Feng R J 2013 Appl. Opt. 52 499
[3] Zhang X, Liao Q H, Chen S W, Hu P, Yu T B and Liu N H 2011 Acta Phys. Sin. 60 104215 (in Chinese)
[4] Peng G D, Tjugiarto T and Chu P L 1990 Electron. Lett. 26 682
[5] Knight J C, Birks T A, Russell P S J and De Sandro P D 1998 Electron. Lett. 34 1347
[6] Roberts P J, Mangan B J and Sabert H 2005 J. Opt. Fiber Commun. Res. 2 435
[7] Liao M, Yan X and Qin G 2009 Opt. Express 17 15481
[8] Li W, Chen H and Chen M 2012 Chin. J. Lasers 39 0205002
[9] Saitoh K, Koshiba M and Hasegawa T 2003 Opt. Express 11 843
[10] Zhang L and Yang C X 2003 Opt. Express 11 1015
[11] Florous N, Saitohk and Koshiba M 2005 Opt. Express 13 7365
[12] Rosa L, Poli F, Foroni M, Cucinotta A and Selleri S 2006 Opt. Lett. 31 441
[13] Liu S, Li S G and Zhu X P 2012 Optik 123 1858
[14] Wang L W, Lou S Q, et al. 2012 Chin. J. Lasers 39 126
[15] Laegsgaard Jesper, Bang Ole and Bjarklev Anders 2004 Opt. Lett. 29 2473
[16] Han B L, Lou S Q, Lu W L, Su W, Zou H and Wang X 2013 Acta Phys. Sin. 62 24 (in Chinese)
[17] Zhao T T, Lou S Q, Wang X, Zhou M and Lian Z G 2016 Appl. Opt. 55 6428
[18] Ma Y 2016 Optoelectron. Lett. 12 257
[19] Chen H L, Li S G, Fan Z K, et al. 2014 IEEE Photon. J. 6 1
[20] Bai Y K and Wang B 2017 Acta Photon. Sin. 46 7
[21] Qu Y, Yuan J, Qiu S, Zhou X, Li F, Yan B, Wu Q, Wang K, Sang X, Long K and Yu C 2021 Sensors 21 496
[22] Tarek Rahman M and Abdul K 2019 Appl. Opt. 58 9426
[23] Bao Q L 2011 Nat. Photon. 5 411
[24] Ren G B, Wang Z, Jian S S and Lou S Q 2004 Acta Phys. Sin. 53 2600 (in Chinese)
[25] Fan Z K, Li S G, Li J S, Wei Z Y and Tian W L 2015 Opt. Mater. 46 384
[26] Jiang L H, Zheng Y, Hou L T, Zheng K, Peng J Y and Zhao X T 2015 Opt. Commun. 351 50
[27] Dash J N and Jha R 2014 IEEE Photon. Technol. Lett. 26 1092
[28] Maharana P K, Srivastava T and Jha R 2013 IEEE Photon. Technol. Lett. 25 122
[29] Chen M Y, Sun B and Zhang Y K 2010 Appl. Opt. 49 3042
[30] Guo S L, Huang H and Tong K 2014 Infrared and Laser Engineering 43 1863
[31] Dou C, Jing X and Li S 2016 Plasmonics 11 1163
[1] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[2] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[3] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[4] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[5] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[6] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[7] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[8] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[9] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[10] Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云). Chin. Phys. B, 2019, 28(12): 124202.
[11] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[12] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[13] Study on polarization properties of graphene coated D-shaped fiber
Xuejing Liu(刘学静), Luwen Yang(杨禄文), Jingyun Ma(马敬云), Caili Li(李彩丽), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2018, 27(10): 104206.
[14] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
[15] Supercontinuum generation in seven-core photonic crystal fiber pumped by a broadband picosecond pulsed fiber amplifier
Ning Su(苏宁), Ping-Xue Li(李平雪), Kun Xiao(肖坤), Xiao-Xiao Wang(王晓晓), Jian-Guo Liu(刘建国), Yue Shao(邵月), Meng Su(苏盟). Chin. Phys. B, 2017, 26(7): 074210.
No Suggested Reading articles found!