INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field |
Yilin Li(李屹林)1, Hui Zhu(朱慧)1,†, Rui Li(李锐)1, Jie Liu(柳杰)1, Jinjuan Xiang(项金娟)2, Na Xie(解娜)1, Zeng Huang(黄增)1, Zhixuan Fang(方志轩)1, Xing Liu(刘行)1, and Lixing Zhou(周丽星)1 |
1 Faculty of Information Technology, Beijing University of Technology, Beijing 100023, China; 2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract We examined the wake-up effect in a TiN/Hf0.4Zr0.6O2/TiN structure. The increased polarization was affected by the cumulative duration of a switched electric field and the single application time of the field during each switching cycle. The space-charge-limited current was stable, indicating that the trap density did not change during the wake-up. The effective charge density in the space-charge region was extracted from capacitance-voltage curves, which demonstrated an increase in free charges at the interface. Based on changing characteristics in these properties, the wake-up effect can be attributed to the redistribution of oxygen vacancies under the electric field.
|
Received: 25 November 2021
Revised: 09 February 2022
Accepted manuscript online: 02 March 2022
|
PACS:
|
85.50.Gk
|
(Non-volatile ferroelectric memories)
|
|
77.55.D
|
(High-permittivity gate dielectric films)
|
|
77.55.fp
|
(Other ferroelectric films)
|
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61201046) and the Natural Science Foundation of Beijing, China (Grant Nos. 4202009 and 4162013). |
Corresponding Authors:
Hui Zhu
E-mail: zhuhui@bjut.edu.cn
|
Cite this article:
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星) Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field 2022 Chin. Phys. B 31 088502
|
[1] Böscke T S, Mäller J, Bräuhaus D, Schröder U, Böttger U, Sundqvist J, Kücher P, Mikolajick T and Frey L 2011 Appl. Phys. Lett. 99 102903 [2] Sang X H, Grimley E D, Schenk T, Schroeder U and LeBeau J M 2015 Appl. Phys. Lett. 106 162905 [3] Fan Z, Chen J S and Wang J 2016 J. Adv. Diele. 6 1630003 [4] Zhao W, Fu Z Q, Deng J M, Li S, Han Y F, Li M R, Wang X Y and Hong J W 2021 Chin. Phys. Lett. 38 037701 [5] Wang J L, Wang D, Li Q, Zhang A H, Gao D, Guo M, Feng J J, Fan Z, Chen D Y, Qin M H, Zeng M, Gao X S, Zhou G F, Lu X B and Liu J M 2019 IEEE Electron Dev. Lett. 40 1937 [6] Tang H, Tang X G, Jiang Y P, Liu Q X and Li W H 2019 Acta Phys. Sin. 68 227701 (in Chinese) [7] Jia Z, Ren T L and Zhang Z G 2006 Chin. Phys. Lett. 23 1943 [8] Wen X Y, Yu J, Wang Y B, Zhou W L, Gao J X and Chu X H 2008 Chin. Phys. Lett. 25 2694 [9] Yang Y, Zhou C J, Peng P G, Xie D, Ren T L, Pan X and Liu J S 2012 Chin. Phys. Lett. 29 128501 [10] Wu Q, Wu X, Zhao Y S and Zhao S F 2020 Chin. Phys. Lett. 37 118401 [11] Ali T, Polakowski P, Riedel S, Büttner T, Kämpfe T, Rudolph M, Pätzold B, Seidel K, Löhr D, Hoffmann R, Czernohorsky M, Kühnel K, Steinke P, Calvo J, Zimmermann K and Müller J 2018 Appl. Phys. Lett. 112 222903 [12] Pešić M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X, LeBeau J M, Slesazeck S, Schroeder U and Mikolajick T 2016 Adv. Funct. Mater. 26 4601 [13] Starschich S, Menzel S and Böttger U 2016 Appl. Phys. Lett. 108 032903 [14] Park M H, Kim H J, Kim Y J, Lee Y H, Moon T, Kim K D, Hyun S D and Hwang C S 2015 Appl. Phys. Lett. 107 192907 [15] Zhou B H, Zhang F J, Liu X, Song Y and Zuo X 2020 Chin. Phys. B 29 047103 [16] Wang Z C, Cui Z Z, Xu H, Zhai X F and Lu Y L 2019 Chin. Phys. B 28 087303 [17] Yang Y, Zhu H, Chu D P, Liu K, Zhang Y L, Pei M H, Feng S W, Jin L, Wang C, Liu J, Li R and Wang S 2020 J. Phys. D 53 115301 [18] Zhao J J, Zhang J S, Zhang F, Wang W, He H R, Cai W Y and Wang J 2019 Chin. Phys. B 28 126801 [19] Chen M C and Jiang A Q 2011 Chin. Phys. Lett. 28 077701 [20] Zhu L, Zhu X L, Liu X Q and Chen X M 2021 Chin. Phys. Lett. 38 047701 [21] Lichtensteiger C, Weymann C, Fernandez-Pena S, Paruch P and Triscone J 2016 New J. Phys. 18 043030 [22] Zhu H, Yang Y, Meng X, Jiang A Q, Bai Z L, Zheng X, Jin L, Wang C and Feng S W 2018 Appl. Phys. Lett. 112 182904 [23] Shang D S, Wang Q, Chen L D, Dong R, Li X M and Zhang W Q 2006 Phys. Rev. B 73 245427 [24] Chen X M, Wu G H, Zhang H L, Qin N, Wang T, Wang F F, Shi W Z and Bao D H 2010 Appl. Phys. A 100 987 [25] Zhu H, Zhang Y Q, Jiang A Q, Bai Z L, Feng S W, Wang P F, Meng X and Qi Q 2016 Appl. Phys. Lett. 109 252901 [26] Lomenzo P D, Takmeel Q and Zhou C Z 2015 J. Appl. Phys. 117 134105 [27] Pintilie L, Stancu V, Trupina L and Pintilie I 2010 Phys. Rev. B 82 085319 [28] Pintilie L and Alexe M 2005 J. Appl. Phys. 98 124103 [29] Lo V C 2002 J. Appl. Phys. 92 6778 [30] Desu S B and Yoo I K 1993 Integrated Ferroelectr. 3 365 [31] Chen M, Liu Z L, Wang Y and Yao K L 2005 Phys. Status Solidi A 202 1166 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|