CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Invariable mobility edge in a quasiperiodic lattice |
Tong Liu(刘通)1,†, Shujie Cheng(成书杰)2, Rui Zhang(张锐)1, Rongrong Ruan(阮榕榕)1, and Houxun Jiang(姜厚勋)1 |
1 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 Department of Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract We analytically and numerically study a 1D tight-binding model with tunable incommensurate potentials. We utilize the self-dual relation to obtain the critical energy, namely, the mobility edge. Interestingly, we analytically demonstrate that this critical energy is a constant independent of strength of potentials. Then we numerically verify the analytical results by analyzing the spatial distributions of wave functions, the inverse participation rate and the multifractal theory. All numerical results are in excellent agreement with the analytical results. Finally, we give a brief discussion on the possible experimental observation of the invariable mobility edge in the system of ultracold atoms in optical lattices.
|
Received: 22 May 2021
Revised: 23 June 2021
Accepted manuscript online: 14 July 2021
|
PACS:
|
61.44.Fw
|
(Incommensurate crystals)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
71.23.An
|
(Theories and models; localized states)
|
|
Fund: T. Liu acknowledges X.-J. Liu for fruitful discussion. This work was supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200737), NUPTSF (Grants Nos. NY220090 and NY220208), and the National Natural Science Foundation of China (Grant No. 12074064), and the Innovation Research Project of Jiangsu Province, China (Grant No. JSSCBS20210521), and NJUPT-STITP (Grant No. XYB2021294). |
Corresponding Authors:
Tong Liu
E-mail: t6tong@njupt.edu.cn
|
Cite this article:
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋) Invariable mobility edge in a quasiperiodic lattice 2022 Chin. Phys. B 31 027101
|
[1] Anderson P W 1958 Phys. Rev. 109 1492 [2] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan TV 1979 Phys. Rev. Lett. 42 673 [3] Semeghini G, Landini M, Castilho P, Roy S, Spagnolli G, Trenkwalder A, Fattori M, Inguscio M and Modugno G 2015 Nat. Phys. 11 554 [4] Skipetrov S E, Minguzzi A, van Tiggelen B A and Shapiro B 2008 Phys. Rev. Lett. 100 165301 [5] Piraud M, Pezzé L and Sanchez-Palencia L 2012 Europhys. Lett. 99 50003 [6] Piraud M, Pezzé L and Sanchez Palencia L 2013 Phys. 15 075007 [7] Delande D and Orso G 2014 Phys. Rev. Lett. 113 060601 [8] Jendrzejewski F, Bernard A, Müller K, Cheinet P, Josse V, Piraud M, Pezzé L, Sanchez Palencia L, Aspect A and Bouyer P 2012 Nat. Phys. 8 398 [9] Sanchez Palencia L 2015 Nat. Phys. 11 525 [10] Das Sarma S, He S and Xie X C 1988 Phys. Rev. Lett. 61 2144 [11] Das Sarma S, He S and Xie X C 1990 Phys. Rev. B 41 5544 [12] Liu T, Yan H Y and Guo H 2017 Phys. Rev. B 96 174207 [13] Biddle J and Das Sarma S 2010 Phys. Rev. Lett. 104 070601 [14] Biddle J, Priour D J, Wang B and Das Sarma S 2011 Phys. Rev. B 83 075105 [15] Ganeshan S, Pixley J H and Das Sarma S 2015 Phys. Rev. Lett. 114 146601 [16] Liu T, Xianlong G, Chen S and Guo H 2017 Phys. Lett. A 381 3683 [17] Liu T and Guo H 2018 Phys. Rev. B 98 104201 [18] Yin H, Hu J, Ji A C, Juzeliunas G, Liu X J and Sun Q 2020 Phys. Rev. Lett. 124 113601 [19] Wang Y, Zhang L, Niu S, Yu D and Liu X J 2020 Phys. Rev. Lett. 125 073204 [20] Wang Y, Xia X, Zhang L, Yao H, Chen S, You J, Zhou Q and Liu X J 2020 Phys. Rev. Lett. 125 196604 [21] Yao H, Khouldi H, Bresque L and Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405 [22] Yao H, Giamarchi T and Sanchez-Palencia L 2020 Phys. Rev. Lett. 125 060401 [23] Liu T, Xia X, Longhi S and Sanchez-Palencia L 2021 arXiv:2105.04591 [24] Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Das Sarma S and Bloch I 2018 Phys. Rev. Lett. 120 160404 [25] An F A, Meier E J and Gadway B 2018 Phys. Rev. X 8 031045 [26] Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 18 [27] Goblot V, Strkalj A, Pernet N, Lado J L, Dorow C, Lemaître A, Le Gratiet L, Harouri A, Sagnes I, Ravets S, Amo A, Bloch J and Zilberberg O 2020 Nat. Phys. 16 832 [28] Liu Y, Jiang X P, Cao J and Chen S 2020 Phy. Rev. B 101 174205 [29] Liu T, Guo H, Pu Y and Longhi S 2020 Phys. Rev. B 102 024205 [30] Zeng Q B, Yang Y B and Xu Y 2020 Phys. Rev. B 101 020201 [31] Thouless D J 1974 Phys. Rep. 13 93 [32] Kohmoto M and Tobe D 2008 Phys. Rev. B 77 134204 [33] Alex An F, Padavić K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S and Gadway B 2021 Phys. Rev. Lett. 126 040603 [34] Song B, He C, Niu S, Zhang L, Ren Z, Liu X J and Jo G B 2019 Nat. Phys. 15 911 [35] Yi C R, Zhang L, Zhang L, Jiao R H, Cheng X C, Wang Z Y, Xu X T, Sun W, Liu X J, Chen S and Pan J W 2019 Phys. Rev. Lett. 123 190603 [36] Ji W, Zhang L, Wang M, Zhang L, Guo Y, Chai Z, Rong X, Shi F, Liu X J, Wang Y and Du J 2020 Phys. Rev. Lett. 125 020504 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|