Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024211    DOI: 10.1088/1674-1056/24/2/024211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical study of the optical gain characteristics of a Ge1-xSnx alloy for a short-wave infrared laser

Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Optical gain characteristics of Ge1-xSnx are simulated systematically. With an injection carrier concentration of 5×1018/cm3 at room temperature, the maximal optical gain of Ge0.922Sn0.078 alloy (with n-type doping concentration being 5×1018/cm3) reaches 500 cm-1. Moreover, considering the free-carrier absorption effect, we find that there is an optimal injection carrier density to achieve a maximal net optical gain. A double heterostructure Ge0.554Si0.289Sn0.157/Ge0.922Sn0.078/Ge0.554Si0.289Sn0.157 short-wave infrared laser diode is designed to achieve a high injection efficiency and low threshold current density. The simulation values of the device threshold current density Jth are 6.47 kA/cm2 (temperature: 200 K, and λ =2050 nm), 10.75 kA/cm2 (temperature: 200 K, and λ =2000 nm), and 23.12 kA/cm2 (temperature: 300 K, and λ =2100 nm), respectively. The results indicate the possibility to obtain a Si-based short-wave infrared Ge1-xSnx laser.
Keywords:  infrared      GeSn alloys      semiconductor lasers      optoelectronic  
Received:  13 July 2014      Revised:  04 September 2014      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.70.Hj (Laser materials)  
  78.40.Fy (Semiconductors)  
  95.85.Jq (Near infrared (0.75-3 μm))  
Fund: Project supported by the Major State Basic Research Development Program of China (Grant No. 2013CB632103), the National High-Technology Research and Development Program of China (Grant No. 2012AA012202), and the National Natural Science Foundation of China (Grant Nos. 61177038 and 61176013).
Corresponding Authors:  Cheng Bu-Wen     E-mail:  cbw@red.semi.ac.cn

Cite this article: 

Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明) Theoretical study of the optical gain characteristics of a Ge1-xSnx alloy for a short-wave infrared laser 2015 Chin. Phys. B 24 024211

[1] Reed G T and Knights A P 2008 Silicon Photonics (Chichester; Hoboken, NJ: John Wiley & Sons)
[2] Liu J, Sun X, Pan D, Wang X, Kimerling L C, Koch T L and Michel J 2007 Opt. Express 15 11272
[3] Liu J F, Sun X C, Kimerling L C and Michel J 2009 Opt. Lett. 34 1738
[4] Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C and Michel J 2012 Opt. Express 20 11316
[5] Wang W, Su S J, Zheng J, Zhang G Z, Zuo Y H, Cheng B W and Wang Q M 2011 Chin. Phys. B 20 068103
[6] Su S J, Cheng B W, Xue C L, Wang W, Cao Q A, Xue H Y, Hu W X, Zhang G Z, Zuo Y H and Wang Q M 2011 Opt. Express 19 6408
[7] Zhang D L, Xue C L, Cheng B W, Su S J, Liu Z, Zhang X, Zhang G Z, Li C B and Wang Q M 2013 Appl. Phys. Lett. 102 141111
[8] Yin W J, Gong X G and Wei S H 2008 Phys. Rev. B 78 161203
[9] D'Costa V R, Fang Y Y, Tolle J, Kouvetakis J and Menéndez J 2009 Phys. Rev. Lett. 102 107403
[10] Mathews J, Beeler R T, Tolle J, Xu C, Roucka R, Kouvetakis J and Meneéndez J 2010 Appl. Phys. Lett. 97 221912
[11] Chen R, Lin H, Huo Y, Hitzman C, Kamins T L and Harris J S 2011 Appl. Phys. Lett. 99 181125
[12] Tseng H H, Wu K Y, Li H, Mashanov V, Cheng H H, Sun G and Soref R A 2013 Appl. Phys. Lett. 102 182106
[13] Gupta J P, Bhargava N, Kim S, Adam T and Kolodzey J 2013 Appl. Phys. Lett. 102 251117
[14] Sun G, Soref R A and Cheng H H 2010 J. Appl. Phys. 108 033107
[15] D'Costa V, Cook C, Birdwell A, Littler C, Canonico M, Zollner S, Kouvetakis J and Menéndez J 2006 Phys. Rev. B 73 125207
[16] Madelung O 2012 Semiconductors: Data Handbook (Berlin, Heidelberg: Springer)
[17] Adachi S 2009 Properties of Semiconductor Alloys: Group-IV, Ⅲ-V and II-VI Semiconductors (Chichester, U.K.: Wiley) John Wiley & Sons, Wiley Online Laborary Online ISBN: 9780470744383
[18] Chuang S L 2008 Physics of Photonic Devices, 2nd edn. (John Wiley & Sons) ISBN: 978-O-470-29319-5
[19] Agrawal G P and Dutta N K 1986 Long Wavelength Semiconductor Lasers (New York: Van Nostrand Reinhold)
[20] Soref R and Larenzo J 1986 IEEE J. Quantum Electron. 22 873
[21] Hilsum C 1974 Electron. Lett. 10 259
[22] Sze S and Irvin J 1968 Solid State Electron. 11 599
[23] Su S J, Wang W, Zhang G Z, Hu W X, Bai A Q, Xue C L, Zuo Y H, Cheng B W and Wang Q M 2011 Acta Phys. Sin. 60 028101 (in Chinese)
[24] Haynes J R and Nilsson N G 1964 Proceedings of VIIth International Conference on Physics of Semiconductors (Paris: Dunod), p. 21
[25] Conradt R and Aengenheister J 1972 Solid. State. Commun. 10 321
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[4] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[5] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[6] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[7] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[8] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[9] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[10] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[11] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[12] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[15] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
No Suggested Reading articles found!