Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 098401    DOI: 10.1088/1674-1056/25/9/098401
SPECIAL TOPIC—Physical research in liquid crystal Prev   Next  

Fullerene solar cells with cholesteric liquid crystal doping

Lulu Jiang(姜璐璐)1, Yurong Jiang(蒋玉荣)1,2, Congcong Zhang(张丛丛)1, Zezhang Chen(陈泽章)1, Ruiping Qin(秦瑞平)1,2, Heng Ma(马恒)1,2
1. Department of Physics, Henan Normal University, Xinxiang 453007, China;
2. Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007, China
Abstract  This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative. With a doping ratio of 0.3 wt%, the device achieves an ideal improvement on the shunt resistor and the fill factor. Compared with the reference cell, the power conversion efficiency of the doped cell is improved 24%. The photoelectric measurement and the active layer characterization indicate that the self-assembly liquid crystal can improve the film crystallization and reduce the membrane defect.
Keywords:  liquid crystal      cholesteryl oleatea      polymer solar cells      active layer optimization  
Received:  20 May 2016      Revised:  03 August 2016      Accepted manuscript online: 
PACS:  84.60.Jt (Photoelectric conversion)  
  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61540016).
Corresponding Authors:  Heng Ma     E-mail:  hengma@henannu.edu.cn

Cite this article: 

Lulu Jiang(姜璐璐), Yurong Jiang(蒋玉荣), Congcong Zhang(张丛丛), Zezhang Chen(陈泽章), Ruiping Qin(秦瑞平), Heng Ma(马恒) Fullerene solar cells with cholesteric liquid crystal doping 2016 Chin. Phys. B 25 098401

[1] Singh G K 2013 Energy 53 1
[2] Sharma V, Kumar A, Sastry O S and Chandei S S 2013 Energy 56 511
[3] Angel Ramon H M, Miriam E, Susana V and Rogelio R 2013 Int. J. Mol. Sci. 14 4081
[4] Wang T H, Chen C H, Guo K P, Chen G, Xu T and Wei B 2016 Chin. Phys. B 25 038402
[5] Zhuo Z L, Wang Y S, He D W and Fu M 2014 Chin. Phys. B 23 098802
[6] Gong X, Jiang Y R, Li M, Liu H R and Ma H 2015 RSC Adv. 5 10310
[7] Medford A J, Lilliedal M R, Jrgensen M and Aar D 2010 Opt. Express 18 A272
[8] Zheng Q, Fang G J, Cheng F, Lei H W and Qin P L 2013 J. Phys. D: Appl. Phys. 46 135101
[9] Yip H L and Jen A K Y 2012 Energy Environ. Sci. 5 5994
[10] Li G, Shrotriya V, Yao Y and Yang Y 2005 J. Appl. Phys. 98 043704
[11] Li G, Yao Y, Yang H C, Shrotriya V, Yang G W and Yang Y 2007 Adv. Funct. Mater. 17 1636
[12] Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y and Lee K 2008 J. Am. Chem. Soc. 130 3619
[13] Kim J Y, Noh S, Kwak J and Lee C 2013 J. Nanosci. Nanotech. 13 3360
[14] Li M, Ma H, Liu H R and Jiang Y R 2014 Appl. Phys. Lett. 104 253905
[15] Shin W, Yasuda T, Watanabe G and Yang Y S 2013 Chem. Mater. 25 2549
[16] Graham K R, Stalder R, Wieruszewski P M and Patel D G 2013 ACS Appl. Mater. Inter. 5 63
[17] Wei G D, Wang S Y, Sun K, Thompson M E and Forrest S R 2011 Adv. Energy Mater. 1 184
[18] Liu J, Choi H, Kim J Y, Bailey C, Durstock M and Dai L M 2012 Adv. Mater. 24 538
[19] Pearson A J, Wang T, Jones R A L and Lidzey D G 2012 Macromol 45 1499
[20] Kastner C, Susarova D K, Jadhav R and Ulbricht C 2012 J. Mater. Chem. 22 15987
[21] Zhang Z C, Zheng Y and Daping C 2014 Light: Sci. & Appl. 3 e213
[22] AlKhalifaha M S, Lei C H, Myers S A, O'Neilla M, Kitney S P and Kelly S M 2014 Liq. Cryst. 41 402
[23] Ni H L, Monobe H, Hua P, Wang B Q, Shimizu Y and Zhao K Q 2013 Liq. Cryst. 40 411
[24] Chen W, Chen Y W, Li F, Chen L, Yuan K, Yao K and Wang P S 2012 Sol. Energy Mater. Sol. Cells 96 266
[25] Sun K, Xiao Z Y, Lu S R, Zajaczkowski W, Ouyang J Y, Williamson R M and Andrew B 2015 Nat. Commun. 6 6013
[26] Canli N Y, Boroglu M S, Bilgin-Eran B and Günes S 2014 Thin Solid Films 560 71
[27] Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J and Bazan G C 2007 Nat. Mater. 6 497
[28] Pivrikas A, Stadler P, Neugebauer H and Sariciftci N S 2008 Org. Elec-tron. 9 775
[29] Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend R H and Mackenzie J D 2001 Science 293 1119
[30] Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E and Friend R H 2002 Physica E: Low Dimens. Syst. Nanostruct 14 263
[31] Zheng Q, Fang G J, Bai W B, Sun N H, Qin P L, Fan X, Cheng F, Yuan L Y and Zhao X Z 2011 Sol. Energy Mater. Sol. Cells 95 2200
[32] Li M, Ma H, Niu H Y and Yao L Y 2014 Acta Phys. Sin. 63 248403 (in Chinese)
[33] Jiang L L, Liu H R, Li M F, Li M, Jiang Y R and Ma H 2015 Chin. J. Liq. Crystal Disp. 30 596 (in Chinese)
[34] Brabec C J, Cravino A, Meissner D, Sariciftci N S, Fromherz T, Rispens M T, Sanchez L and Hummelen J C 2001 Adv. Funct. Mater. 11 374
[1] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[2] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[3] A minimal model for the auxetic response of liquid crystal elastomers
Bingyu Yu(於冰宇), Yuanchenxi Gao(高袁晨曦), Bin Zheng(郑斌), Fanlong Meng(孟凡龙), Yu Fang(方羽), Fangfu Ye(叶方富), and Zhongcan Ouyang(欧阳钟灿). Chin. Phys. B, 2022, 31(10): 104601.
[4] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[5] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[6] Irradiation study of liquid crystal variable retarder for Full-disk Magneto-Graph payload onboard ASO-S mission
Jun-Feng Hou(侯俊峰), Hai-Feng Wang(王海峰), Gang Wang(王刚), Yong-Quan Luo(骆永全), Hong-Wei Li(李宏伟), Zhen-Long Zhang(张振龙), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇). Chin. Phys. B, 2020, 29(7): 074208.
[7] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
[8] Interference effect on the liquid-crystal-based Stokes polarimeter
Jun-Feng Hou(侯俊峰), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇), Zhi-Yong Zhang(张志勇), and Ying-Zi Sun(孙英姿). Chin. Phys. B, 2020, 29(12): 124211.
[9] Design of an augmented reality display based on polarization grating
Renjie Xia(夏人杰), Changshun Wang(王长顺), Yujia Pan(潘雨佳), Tianyu Chen(陈天宇), Ziyao Lyu(吕子瑶), Lili Sun(孙丽丽). Chin. Phys. B, 2019, 28(7): 074201.
[10] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[11] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
[12] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[13] Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour, Mohammad Khanzadeh. Chin. Phys. B, 2017, 26(9): 097203.
[14] Experimental design to measure the anchoring energy on substrate surface by using the alternating-current bridge
Hui-Ming Hao(郝慧明), Yao-Yao Liu(刘瑶瑶), Ping Zhang(张平), Ming-Lei Cai(蔡明雷), Xiao-Yan Wang(王晓燕), Ji-Liang Zhu(朱吉亮), Wen-Jiang Ye(叶文江). Chin. Phys. B, 2017, 26(8): 086102.
[15] Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface
Xiaolong Lu(逯晓龙), Ruixin Shi(史瑞新), Changchun Hao(郝长春), Huan Chen(陈欢), Lei Zhang(张蕾), Junhua Li(李俊花), Guoqing Xu(徐国庆), Runguang Sun(孙润广). Chin. Phys. B, 2016, 25(9): 090506.
No Suggested Reading articles found!