SPECIAL TOPIC—Physical research in liquid crystal |
Prev
Next
|
|
|
Fullerene solar cells with cholesteric liquid crystal doping |
Lulu Jiang(姜璐璐)1, Yurong Jiang(蒋玉荣)1,2, Congcong Zhang(张丛丛)1, Zezhang Chen(陈泽章)1, Ruiping Qin(秦瑞平)1,2, Heng Ma(马恒)1,2 |
1. Department of Physics, Henan Normal University, Xinxiang 453007, China; 2. Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007, China |
|
|
Abstract This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative. With a doping ratio of 0.3 wt%, the device achieves an ideal improvement on the shunt resistor and the fill factor. Compared with the reference cell, the power conversion efficiency of the doped cell is improved 24%. The photoelectric measurement and the active layer characterization indicate that the self-assembly liquid crystal can improve the film crystallization and reduce the membrane defect.
|
Received: 20 May 2016
Revised: 03 August 2016
Accepted manuscript online:
|
PACS:
|
84.60.Jt
|
(Photoelectric conversion)
|
|
61.30.Gd
|
(Orientational order of liquid crystals; electric and magnetic field effects on order)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61540016). |
Corresponding Authors:
Heng Ma
E-mail: hengma@henannu.edu.cn
|
Cite this article:
Lulu Jiang(姜璐璐), Yurong Jiang(蒋玉荣), Congcong Zhang(张丛丛), Zezhang Chen(陈泽章), Ruiping Qin(秦瑞平), Heng Ma(马恒) Fullerene solar cells with cholesteric liquid crystal doping 2016 Chin. Phys. B 25 098401
|
[1] |
Singh G K 2013 Energy 53 1
|
[2] |
Sharma V, Kumar A, Sastry O S and Chandei S S 2013 Energy 56 511
|
[3] |
Angel Ramon H M, Miriam E, Susana V and Rogelio R 2013 Int. J. Mol. Sci. 14 4081
|
[4] |
Wang T H, Chen C H, Guo K P, Chen G, Xu T and Wei B 2016 Chin. Phys. B 25 038402
|
[5] |
Zhuo Z L, Wang Y S, He D W and Fu M 2014 Chin. Phys. B 23 098802
|
[6] |
Gong X, Jiang Y R, Li M, Liu H R and Ma H 2015 RSC Adv. 5 10310
|
[7] |
Medford A J, Lilliedal M R, Jrgensen M and Aar D 2010 Opt. Express 18 A272
|
[8] |
Zheng Q, Fang G J, Cheng F, Lei H W and Qin P L 2013 J. Phys. D: Appl. Phys. 46 135101
|
[9] |
Yip H L and Jen A K Y 2012 Energy Environ. Sci. 5 5994
|
[10] |
Li G, Shrotriya V, Yao Y and Yang Y 2005 J. Appl. Phys. 98 043704
|
[11] |
Li G, Yao Y, Yang H C, Shrotriya V, Yang G W and Yang Y 2007 Adv. Funct. Mater. 17 1636
|
[12] |
Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y and Lee K 2008 J. Am. Chem. Soc. 130 3619
|
[13] |
Kim J Y, Noh S, Kwak J and Lee C 2013 J. Nanosci. Nanotech. 13 3360
|
[14] |
Li M, Ma H, Liu H R and Jiang Y R 2014 Appl. Phys. Lett. 104 253905
|
[15] |
Shin W, Yasuda T, Watanabe G and Yang Y S 2013 Chem. Mater. 25 2549
|
[16] |
Graham K R, Stalder R, Wieruszewski P M and Patel D G 2013 ACS Appl. Mater. Inter. 5 63
|
[17] |
Wei G D, Wang S Y, Sun K, Thompson M E and Forrest S R 2011 Adv. Energy Mater. 1 184
|
[18] |
Liu J, Choi H, Kim J Y, Bailey C, Durstock M and Dai L M 2012 Adv. Mater. 24 538
|
[19] |
Pearson A J, Wang T, Jones R A L and Lidzey D G 2012 Macromol 45 1499
|
[20] |
Kastner C, Susarova D K, Jadhav R and Ulbricht C 2012 J. Mater. Chem. 22 15987
|
[21] |
Zhang Z C, Zheng Y and Daping C 2014 Light: Sci. & Appl. 3 e213
|
[22] |
AlKhalifaha M S, Lei C H, Myers S A, O'Neilla M, Kitney S P and Kelly S M 2014 Liq. Cryst. 41 402
|
[23] |
Ni H L, Monobe H, Hua P, Wang B Q, Shimizu Y and Zhao K Q 2013 Liq. Cryst. 40 411
|
[24] |
Chen W, Chen Y W, Li F, Chen L, Yuan K, Yao K and Wang P S 2012 Sol. Energy Mater. Sol. Cells 96 266
|
[25] |
Sun K, Xiao Z Y, Lu S R, Zajaczkowski W, Ouyang J Y, Williamson R M and Andrew B 2015 Nat. Commun. 6 6013
|
[26] |
Canli N Y, Boroglu M S, Bilgin-Eran B and Günes S 2014 Thin Solid Films 560 71
|
[27] |
Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J and Bazan G C 2007 Nat. Mater. 6 497
|
[28] |
Pivrikas A, Stadler P, Neugebauer H and Sariciftci N S 2008 Org. Elec-tron. 9 775
|
[29] |
Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend R H and Mackenzie J D 2001 Science 293 1119
|
[30] |
Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E and Friend R H 2002 Physica E: Low Dimens. Syst. Nanostruct 14 263
|
[31] |
Zheng Q, Fang G J, Bai W B, Sun N H, Qin P L, Fan X, Cheng F, Yuan L Y and Zhao X Z 2011 Sol. Energy Mater. Sol. Cells 95 2200
|
[32] |
Li M, Ma H, Niu H Y and Yao L Y 2014 Acta Phys. Sin. 63 248403 (in Chinese)
|
[33] |
Jiang L L, Liu H R, Li M F, Li M, Jiang Y R and Ma H 2015 Chin. J. Liq. Crystal Disp. 30 596 (in Chinese)
|
[34] |
Brabec C J, Cravino A, Meissner D, Sariciftci N S, Fromherz T, Rispens M T, Sanchez L and Hummelen J C 2001 Adv. Funct. Mater. 11 374
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|