Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127402    DOI: 10.1088/1674-1056/26/12/127402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A hybrid functional first-principles study on the band structure of non-strained Ge1-xSnx alloys

Xiaohuai Wang(王小怀)1, Chengzhao Chen(陈城钊)1, Shengqi Feng(冯胜奇)1, Xinyuan Wei(魏心源)2, Yun Li(李云)1
1. Department of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou 521041, China;
2. State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
Abstract  Using hybrid-functional first-principles calculation combined with the supercell method and band unfolding technique we investigate the band structure of non-strained Ge1-xSnx alloys with various Sn concentrations. The calculations show that at the Sn concentration of~3.1 mol% the GeSn alloy presents a direct band gap. The variation of the band structure are ascribed to the weaker electro-negativity of Sn atoms and a slight charge transfer from Sn atoms to Ge atoms.
Keywords:  GeSn alloy      direct band gap      first-principles calculation  
Received:  24 July 2017      Revised:  26 August 2017      Accepted manuscript online: 
PACS:  74.20.Pq (Electronic structure calculations)  
  71.20.Mq (Elemental semiconductors)  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry of China (Grant No.[2015]-1098), the Open Project of the State Key Laboratory of Surface Physics of Fudan University, the Natural Science Foundation of Guangdong Province of China (Grant No. 2016A030307038), and the University Innovating and Strengthening Project of Department of Education of Guangdong Province, China (Grant No. 2015KTSCX090).
Corresponding Authors:  Yun Li     E-mail:  liyunphy@foxmail.com

Cite this article: 

Xiaohuai Wang(王小怀), Chengzhao Chen(陈城钊), Shengqi Feng(冯胜奇), Xinyuan Wei(魏心源), Yun Li(李云) A hybrid functional first-principles study on the band structure of non-strained Ge1-xSnx alloys 2017 Chin. Phys. B 26 127402

[1] Shen H, Li D S and Yang D R 2015 Acta Phys. Sin. 64 204208(in Chinese)
[2] Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D and Grützmacher D 2015 Nat. Photon. 9 88
[3] Liu L, Sun X, Pan D, Wang X, Kimerling L C, Koch T L and Michel J 2007 Opt. Express 15 11272
[4] Süess M J, Geiger R, Minamisawa R A, Schiefler G, Frigerio J, Chrastina D, Isella G, Spolenak R, Faist J and Sigg H 2013 Nat. Photon. 7 466
[5] Sun X, Liu J, Kimerling L C and Michel J 2009 Appl. Phys. Lett. 95 011911
[6] Sanchez-Perez J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R, Lagally M G and Paiella R 2011 Proc. Natl. Acad. Sci. 108 18893
[7] Nam D, Sukhdeo D, Roy A, Balram D, Cheng S L, Huang K C Y, Yuan Z, Brongersma M, Nishi Y, Miller D and Saraswat K 2011 Opt. Express 19 25866
[8] Homewood K P and Lourenco M A 2015 Nat. Photon. 9 78
[9] He G and Atwater H A 1997 Phys. Rev. Lett. 79 1937
[10] D'Costa V R, Cook C S, Birdwell A G, Littler C L, Canonico M, Zollner S, Kouvetakis J and Menéndez J 2006 Phys. Rev. B 73 125207
[11] Mathews J, Beeler R T, Tolle J, Xu C, Roucka R, Kouvetakis J and Menéndez J 2010 Appl. Phys. Lett. 97 221912
[12] Tseng H H, Wu K Y, Li H, Mashanov V, Cheng H H, Sun G and Soref R A 2013 Appl. Phys. Lett. 102 182106
[13] Chen R, Lin H, Huo Y, Hitzman C, Kamins T I and Harris J S 2011 Appl. Phys. Lett. 99 181125
[14] Wirths S, Ikonic Z, Tiedemann A T, Holländer B, Stoica T, Mussler G, Breuer U, Hartmann J M, Benedetti A, Chiussi S, Grützmacher D, Mantl S and Buca D 2013 Appl. Phys. Lett. 103 192110
[15] Gencarelli F, Vincent B, Demeulemeester J, Vantomme A, Moussa A, Franquet A, Kumar A, Bender H, Meersschaut J, Vandervorst W, Loo R, Caymax M, Temst K and Heyns M 2013 ECS J. Solid State Sci. Technol. 2 134
[16] Senaratne C L, Gallagher J D, Aoki T and Kouvetakis J 2014 Chem. Mater. 26 6033
[17] Oehme M, Kostecki K, Schmid M, Oliveira F, Kasper E and Schulze J 2014 Thin Solid Films 557 169
[18] von den Driesch N, Stange D, Wirths S, Mussler G, Hollander B, Ikonic Z, Hartmann J M, Stoica T, Mantl S, Grützmacher D and Buca D 2015 Chem. Mater. 27 4693
[19] Thurmond C D, Trumbore F A and Kowalchik M J 1956 Chem. Phys. 25 799
[20] Gupta S, Chen R, Huang Y C, Kim Y, Sanchez E, Harris J S and Saraswat K C 2013 Nano Lett. 13 3783
[21] Tao P, Huang L, Cheng H H, Wang H H, and Wu X S 2014 Chin. Phys. B 23 088112
[22] Mahmodi H and Hashim M R 2017 Chin. Phys. B 26 056801
[23] Vincent B, Gencarelli F, Bender H, Merckling C, Douhard B, Petersen D H, Hansen O, Henrichsen H H, Meersschaut J, Vandervorst W, Heyns M, Loo R and Caymax M 2011 Appl. Phys. Lett. 99 152103
[24] Kasper E and Oehme M 2015 Jpn. J. Appl. Phys. 54 04DG11
[25] Yin W J, Gong X G and Wei S H 2008 Phys. Rev. B 78 161203
[26] Low K L, Yang Y, Han G, Fan W and Yeo Y C 2012 J. Appl. Phys. 112 103715
[27] Kotlyar R, Avci U E, Cea S, Rios R, Linton T D, Kuhn K J and Young I A 2013 Appl. Phys. Lett. 102 113106
[28] Gupta S, Magyari-Köpe B, Nishi Y and Saraswat K C 2013 J. Appl. Phys. 113 073707
[29] Lan H S and Liu C W 2014 Appl. Phys. Lett. 104 192101
[30] Sant S and Schenk A 2014 Appl. Phys. Lett. 105 162101
[31] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[32] Blöchl P E 1994 Phys. Rev. B 50 17953
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[35] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[36] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[37] Heyd J and Scuseria G E 2004 J. Chem. Phys. 121 1187
[38] Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906
[39] Liu B, Wu L J, Zhao Y Q, Wang L Z, and Cai M Q 2016 J. Magn. Magn. Mater. 420 218
[40] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
[41] Wang L Z, Zhao Y Q, Liu B, Wu L J and Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188
[42] Liu B, Wu L J, Zhao Y Q, Wang L Z and Cai M Q 2016 RSC Adv. 6 92473
[43] http://www.ioffe.ru/SVA/NSM/Semicond/Ge/bandstr.html
[44] Wang L W, Bellaiche L, Wei S H and Zunger A 1998 Phys. Rev. Lett. 80 4725
[45] Popescu V and Zunger A 2012 Phys. Rev. B 85 085201
[46] Ku W, Berlijn T and Lee C C 2010 Phys. Rev. Lett. 104 216401
[47] Zheng G, Zhang P and Duan W 2015 Comput. Phys. Commun. 189 213
[48] Medeiros P V C, Stafström S and Björk J 2014 Phys. Rev. B 89 041407
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!