CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A hybrid functional first-principles study on the band structure of non-strained Ge1-xSnx alloys |
Xiaohuai Wang(王小怀)1, Chengzhao Chen(陈城钊)1, Shengqi Feng(冯胜奇)1, Xinyuan Wei(魏心源)2, Yun Li(李云)1 |
1. Department of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou 521041, China; 2. State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China |
|
|
Abstract Using hybrid-functional first-principles calculation combined with the supercell method and band unfolding technique we investigate the band structure of non-strained Ge1-xSnx alloys with various Sn concentrations. The calculations show that at the Sn concentration of~3.1 mol% the GeSn alloy presents a direct band gap. The variation of the band structure are ascribed to the weaker electro-negativity of Sn atoms and a slight charge transfer from Sn atoms to Ge atoms.
|
Received: 24 July 2017
Revised: 26 August 2017
Accepted manuscript online:
|
PACS:
|
74.20.Pq
|
(Electronic structure calculations)
|
|
71.20.Mq
|
(Elemental semiconductors)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
Fund: Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry of China (Grant No.[2015]-1098), the Open Project of the State Key Laboratory of Surface Physics of Fudan University, the Natural Science Foundation of Guangdong Province of China (Grant No. 2016A030307038), and the University Innovating and Strengthening Project of Department of Education of Guangdong Province, China (Grant No. 2015KTSCX090). |
Corresponding Authors:
Yun Li
E-mail: liyunphy@foxmail.com
|
Cite this article:
Xiaohuai Wang(王小怀), Chengzhao Chen(陈城钊), Shengqi Feng(冯胜奇), Xinyuan Wei(魏心源), Yun Li(李云) A hybrid functional first-principles study on the band structure of non-strained Ge1-xSnx alloys 2017 Chin. Phys. B 26 127402
|
[1] |
Shen H, Li D S and Yang D R 2015 Acta Phys. Sin. 64 204208(in Chinese)
|
[2] |
Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D and Grützmacher D 2015 Nat. Photon. 9 88
|
[3] |
Liu L, Sun X, Pan D, Wang X, Kimerling L C, Koch T L and Michel J 2007 Opt. Express 15 11272
|
[4] |
Süess M J, Geiger R, Minamisawa R A, Schiefler G, Frigerio J, Chrastina D, Isella G, Spolenak R, Faist J and Sigg H 2013 Nat. Photon. 7 466
|
[5] |
Sun X, Liu J, Kimerling L C and Michel J 2009 Appl. Phys. Lett. 95 011911
|
[6] |
Sanchez-Perez J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R, Lagally M G and Paiella R 2011 Proc. Natl. Acad. Sci. 108 18893
|
[7] |
Nam D, Sukhdeo D, Roy A, Balram D, Cheng S L, Huang K C Y, Yuan Z, Brongersma M, Nishi Y, Miller D and Saraswat K 2011 Opt. Express 19 25866
|
[8] |
Homewood K P and Lourenco M A 2015 Nat. Photon. 9 78
|
[9] |
He G and Atwater H A 1997 Phys. Rev. Lett. 79 1937
|
[10] |
D'Costa V R, Cook C S, Birdwell A G, Littler C L, Canonico M, Zollner S, Kouvetakis J and Menéndez J 2006 Phys. Rev. B 73 125207
|
[11] |
Mathews J, Beeler R T, Tolle J, Xu C, Roucka R, Kouvetakis J and Menéndez J 2010 Appl. Phys. Lett. 97 221912
|
[12] |
Tseng H H, Wu K Y, Li H, Mashanov V, Cheng H H, Sun G and Soref R A 2013 Appl. Phys. Lett. 102 182106
|
[13] |
Chen R, Lin H, Huo Y, Hitzman C, Kamins T I and Harris J S 2011 Appl. Phys. Lett. 99 181125
|
[14] |
Wirths S, Ikonic Z, Tiedemann A T, Holländer B, Stoica T, Mussler G, Breuer U, Hartmann J M, Benedetti A, Chiussi S, Grützmacher D, Mantl S and Buca D 2013 Appl. Phys. Lett. 103 192110
|
[15] |
Gencarelli F, Vincent B, Demeulemeester J, Vantomme A, Moussa A, Franquet A, Kumar A, Bender H, Meersschaut J, Vandervorst W, Loo R, Caymax M, Temst K and Heyns M 2013 ECS J. Solid State Sci. Technol. 2 134
|
[16] |
Senaratne C L, Gallagher J D, Aoki T and Kouvetakis J 2014 Chem. Mater. 26 6033
|
[17] |
Oehme M, Kostecki K, Schmid M, Oliveira F, Kasper E and Schulze J 2014 Thin Solid Films 557 169
|
[18] |
von den Driesch N, Stange D, Wirths S, Mussler G, Hollander B, Ikonic Z, Hartmann J M, Stoica T, Mantl S, Grützmacher D and Buca D 2015 Chem. Mater. 27 4693
|
[19] |
Thurmond C D, Trumbore F A and Kowalchik M J 1956 Chem. Phys. 25 799
|
[20] |
Gupta S, Chen R, Huang Y C, Kim Y, Sanchez E, Harris J S and Saraswat K C 2013 Nano Lett. 13 3783
|
[21] |
Tao P, Huang L, Cheng H H, Wang H H, and Wu X S 2014 Chin. Phys. B 23 088112
|
[22] |
Mahmodi H and Hashim M R 2017 Chin. Phys. B 26 056801
|
[23] |
Vincent B, Gencarelli F, Bender H, Merckling C, Douhard B, Petersen D H, Hansen O, Henrichsen H H, Meersschaut J, Vandervorst W, Heyns M, Loo R and Caymax M 2011 Appl. Phys. Lett. 99 152103
|
[24] |
Kasper E and Oehme M 2015 Jpn. J. Appl. Phys. 54 04DG11
|
[25] |
Yin W J, Gong X G and Wei S H 2008 Phys. Rev. B 78 161203
|
[26] |
Low K L, Yang Y, Han G, Fan W and Yeo Y C 2012 J. Appl. Phys. 112 103715
|
[27] |
Kotlyar R, Avci U E, Cea S, Rios R, Linton T D, Kuhn K J and Young I A 2013 Appl. Phys. Lett. 102 113106
|
[28] |
Gupta S, Magyari-Köpe B, Nishi Y and Saraswat K C 2013 J. Appl. Phys. 113 073707
|
[29] |
Lan H S and Liu C W 2014 Appl. Phys. Lett. 104 192101
|
[30] |
Sant S and Schenk A 2014 Appl. Phys. Lett. 105 162101
|
[31] |
Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
|
[32] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[33] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[34] |
Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
|
[35] |
Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
|
[36] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[37] |
Heyd J and Scuseria G E 2004 J. Chem. Phys. 121 1187
|
[38] |
Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906
|
[39] |
Liu B, Wu L J, Zhao Y Q, Wang L Z, and Cai M Q 2016 J. Magn. Magn. Mater. 420 218
|
[40] |
Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
|
[41] |
Wang L Z, Zhao Y Q, Liu B, Wu L J and Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188
|
[42] |
Liu B, Wu L J, Zhao Y Q, Wang L Z and Cai M Q 2016 RSC Adv. 6 92473
|
[43] |
http://www.ioffe.ru/SVA/NSM/Semicond/Ge/bandstr.html
|
[44] |
Wang L W, Bellaiche L, Wei S H and Zunger A 1998 Phys. Rev. Lett. 80 4725
|
[45] |
Popescu V and Zunger A 2012 Phys. Rev. B 85 085201
|
[46] |
Ku W, Berlijn T and Lee C C 2010 Phys. Rev. Lett. 104 216401
|
[47] |
Zheng G, Zhang P and Duan W 2015 Comput. Phys. Commun. 189 213
|
[48] |
Medeiros P V C, Stafström S and Björk J 2014 Phys. Rev. B 89 041407
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|