Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 058702    DOI: 10.1088/1674-1056/ac598b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations

Jian-Gang Wang(王建港)1,2, Xiao-Xuan Shi(史晓璇)1,2, Yu-Ru Liu(刘玉如)2, Peng-Ye Wang(王鹏业)2, Hong Chen(陈洪)1,†, and Ping Xie(谢平)2,‡
1 School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
2 Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Kinesin is a molecular motor that can step processively on microtubules via the hydrolysis of ATP molecules. An important factor characterizing the processivity of the kinesin motor is its dissociation from the microtubule. Here, using all-atom molecular dynamics simulations, we studied the dissociation process of the kinesin head in weak-microtubule-binding or ADP state from tubulin on the basis of the available high-resolution structural data for the head and tubulin. By analyzing the simulated snapshots of the structure of the head-tubulin complex we provided detailed structural and dynamic information for the dissociation process. We found that the dissociation of the head along different directions relative to the tubulin exhibits very different dynamic behaviors. Moreover, the potential forms or energy landscapes of the interaction between the head and tubulin along different directions were determined. The studies have important implications for the detailed molecular mechanism of the dissociation of the kinesin motor and thus are critical to the mechanism of its processivity.
Keywords:  kinesin      dissociation      energy landscape      molecular dynamics simulation  
Received:  07 January 2022      Revised:  20 February 2022      Accepted manuscript online: 
PACS:  87.16.Nn (Motor proteins (myosin, kinesin dynein))  
  87.15.rs (Dissociation)  
  87.10.Tf (Molecular dynamics simulation)  
Corresponding Authors:  Hong Chen,E-mail:hchen2017@163.com;Ping Xie,E-mail:pxie@aphy.iphy.ac.cn     E-mail:  hchen2017@163.com;pxie@aphy.iphy.ac.cn
About author:  2022-3-2

Cite this article: 

Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平) Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations 2022 Chin. Phys. B 31 058702

[1] Vale R D, Reese T S and Sheetz M P 1985 Cell 42 39
[2] Howard J 1996 Annu. Rev. Physiol. 58 703
[3] Hirokawa N 1998 Science 279 519
[4] Hirokawa N, Noda Y, Tanaka Y and Niwa S 2009 Nat. Rev. Mol. Cell. Biol. 10 682
[5] Xie P 2010 Int. J. Biol. Sci. 6 665
[6] Li M, Ouyang Z C and Shu Y G 2016 Acta Phys. Sin. 65 188702 (in Chinese)
[7] Qin J, Zhang H, Geng Y and Ji Q 2020 Int. J. Mol. Sci. 21 6977
[8] Geng Y Z, Zhang H, Ji Q and Yan S W 2014 Chin. Phys. Lett. 31 048702
[9] Xie P, Dou S X and Wang P Y 2005 Chin. Phys. B 14 744
[10] Crevel I M T C, Lockhart A and Cross R A 1996 J. Mol. Biol. 257 66
[11] Hancock W O and Howard J 1999 Proc. Natl. Acad. Sci. USA 96 13147
[12] Sosa H, Peterman E J G, Moerner W E and Goldstein L S B 2001 Nat. Struct. Mol. Biol. 8 540
[13] Gigant B, Wang W, Dreier B, Jiang Q, Pecqueur L, Plückthun A, Wang C and Knossow M 2013 Nat. Struct. Mol. Biol. 20 1001
[14] Cao L, Wang W, Jiang Q, Wang C, Knossow M and Gigant B 2014 Nat. Commun. 5 5364
[15] Kikkawa M and Hirokawa N 2006 EMBO J. 25 4187
[16] Hirose K, Akimaru E, Akiba T, Endow S A and Amos L A 2006 Mol. Cell 23 913
[17] Sindelar C V and Downing K H 2010 Proc. Natl. Acad. Sci. USA 107 4111
[18] Goulet A, Behnke-Parks W M, Sindelar C V, Major J, Rosenfeld S S and Moores C A 2012 J. Biol. Chem. 287 44654
[19] Goulet A, Major J, Jun Y, Gross S P, Rosenfeld S S and Moores C A 2014 Proc. Natl. Acad. Sci. USA 111 1837
[20] Morikawa M, Yajima H, Nitta R, Inoue S, Ogura T, Sato C and Hirokawa N 2015 EMBO J. 34 1270
[21] Li M and Zheng W 2012 Biochemistry 51 5022
[22] Chakraborty S and Zheng W 2015 Biochemistry 54 859
[23] Ma Y, Li T, Jin Y, Geng Y and Ji Q 2019 Cell. Mol. Bioeng. 12 345
[24] Shi X X, Fu Y B, Guo S K, Wang P Y, Chen H and Xie P 2018 Proteins 86 1127
[25] Shi X X, Wang P Y, Chen H and Xie P 2021 Int. J. Mol. Sci. 22 6709
[26] Coppin C M, Pierce D W, Hsu L and Vale R D 1997 Proc. Natl. Acad. Sci. USA 94 8539
[27] Kunwar A, Tripathy S K, Xu J, Mattson M K, Anand P, Sigua R, Vershinin M, McKenney R J, Yu C C, Mogilner A and Gross S P 2011 Proc. Natl. Acad. Sci. USA 108 18960
[28] Andreasson J O L, Milic B, Chen G Y, Guydosh N R, Hancock W O and Block S M 2015 eLife 4 e07403
[29] Yildiz A, Tomishige M, Gennerich A and Vale R D 2008 Cell 134 1030
[30] Schnitzer M J, Visscher K and Block S M 2000 Nature Cell Biol. 2 718
[31] Milic B, Andreasson J O L, Hancock W O and Block S M 2014 Proc. Natl. Acad. Sci. USA 111 14136
[32] Clancy B E, Behnke-Parks W M, Andreasson J O L, Rosenfeld S S and Block S M 2011 Nat. Struct. Mol. Biol. 18 1020
[33] Fisher M E and Kolomeisky A B 2001 Proc. Natl. Acad. Sci. USA 98 7748
[34] Vu H T, Chakrabarti S, Hinczewski M and Thirumalai D 2016 Phys. Rev. Lett. 117 078101
[35] Khataee H and Howard J 2019 Phys. Rev. Lett. 122 188101
[36] Liepelt S and Lipowsky R 2007 Phys. Rev. Lett. 98 258102
[37] Sasaki K, Kaya M and Higuchi H 2018 Biophys. J. 115 1981
[38] Sumi T 2017 Sci. Rep. 7 1163
[39] Guo S K, Shi X X, Wang P Y and Xie P 2018 FEBS Open Bio. 8 1332
[40] Guo S K, Shi X X, Wang P Y and Xie P 2019 Biophys. Chem. 253 106216
[41] Xie P 2020 ACS. Omega 5 5721
[42] Xie P 2021 Commun. Theor. Phys. 73 057601
[43] Xie P 2021 J. Theor. Biol. 530 110879
[44] Uemura S, Kawaguchi K, Yajima J, Edamatsu M, Toyoshima Y Y and Ishiwata S I 2002 Proc. Natl. Acad. Sci. USA 99 5977
[45] Kull F J, Sablin E P, Lau R, Fletterick R J and Vale R D 1996 Nature 380 550
[46] Lowe J, Li H, Downing K H and Nogales E 2001 J. Mol. Biol. 313 1045
[47] Guex N and Peitsch M C 1997 Electrophoresis 18 2714
[48] Shi X X, Guo S K, Wang P Y, Chen H and Xie P 2020 Proteins 88 545
[49] Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C and Ferrin T E 2004 J. Comput. Chem. 25 1605
[50] Zimmerman K 1991 J. Comp. Chem. 12 310
[51] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[52] Berendsen H J C, Postma J P M, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[53] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[54] Wang Z, Zhang Z, Fu Y, Wang P and Xie P 2017 Chin. Phys. B 26 030201
[55] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem.Theory. Comput. 4 435
[56] Hornak V, Abel R, Okur A, Strockbine B, Roitberg A and Simmerling C 2006 Proteins 65 712
[57] Price D J and Brooks C L 3rd 2004 J. Chem. Phys. 121 10096
[58] Hockney R W, Goel S P and Eastwood J W 1974 J. Comp. Phys. 14 148
[59] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463
[60] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[61] Howard J, Hudspeth A J and Vale R D 1989 Nature 342 154
[62] Block S M, Goldstein L S and Schnapp B J 1990 Nature 348 348
[63] Guo S K, Wang P Y and Xie P 2017 J. Theor. Biol. 414 62
[64] Xie P 2021 Sci. Rep. 11 8081
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Nuclear dissociation after the O 1s $\rightarrow (^4\Sigma_\text{u}^-)$3sσ excitation in O$_2$ molecules
Bocheng Ding(丁伯承), Ruichang Wu(吴睿昌), Yunfei Feng(封云飞), and Xiaojing Liu(刘小井). Chin. Phys. B, 2022, 31(8): 083301.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[13] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[14] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[15] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
No Suggested Reading articles found!