Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 078503    DOI: 10.1088/1674-1056/ac398c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites

Dandan Wen(文丹丹)1,2,3,†, Xia Chen(陈霞)3, Dasen Luo(骆大森)3, Yi Lu(卢毅)1, Yixin Chen(陈一鑫)3, Renpu Li(黎人溥)1, and Wei Cui(崔巍)3,‡
1 Doctoral Research Station of Chongqing Key Laboratory of Optoelectronic Information Sensing and Transmission Technology, Chongqing University of Post and Telecommunications, Chongqing 400065, China;
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
3 Chongqing Key Laboratory of Autonomous Navigation and Microsystem, Chongqing University of Post and Telecommunications, Chongqing 400065, China
Abstract  The combined effects of Sm$^{3+}$ substitution together with the addition of 3 wt% Bi$_{2}$O$_{3}$ endow MgCd ferrites with excellent magnetic permeability and dielectric permittivity. Various concentrations of Sm$^{3+}$ ($x = 0$, 0.03, 0.06, 0.09, 0.12 and 0.15) were employed to modify the permeability ($\mu'$) and permittivity ($\varepsilon'$) of the MgCd ferrites. X-ray diffraction, scanning electron microscopy (SEM), vibrating sample magnetometry and vector network analysis techniques were used to characterize the samples. The measurement results reveal that the ferrites processed a saturation magnetization of up to 36.8 emu/g and coercivity of up to 29.2 Oe via the conventional solid-state reaction method. The surface morphology SEM confirms that with increasing Sm$^{3+}$ concentration, the grain shape changes from a polygon to a circle. Moreover, the dielectric permittivity can reach a value of 23. The excellent properties obtained in Sm$^{3+}$-substituted Mg ferrites suggest that they could be promising candidates for modern high-frequency antenna substrates or multilayer devices.
Keywords:  ferrites      Sm3+ ions      substitution      magnetic permeability      dielectric permittivity  
Received:  08 September 2021      Revised:  04 November 2021      Accepted manuscript online:  15 November 2021
PACS:  85.70.Ge (Ferrite and garnet devices)  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0115500), the National Natural Science Foundation of China (Grant Nos. 51902037 and 62005033), the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. KFJJ201912), the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (Grant No. KJQN201900615), and the Nature Science Foundation of Chongqing (Grant No. cstc2019jcyjmsxmX0696).
Corresponding Authors:  Dandan Wen, Wei Cui     E-mail:  wendd@cqupt.edu.cn;cuiwei@cqupt.edu.cn

Cite this article: 

Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍) Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites 2022 Chin. Phys. B 31 078503

[1] Hu J Y, Liu X S, Kan X C, Feng S J, Liu C C, Wang W, Urrehman K M, Shazed M, Zhou S Q and Wu Q 2019 J. Magn. Magn. Mater. 489 165411
[2] Han J M, Sun L, Cao E S, Hao W T, Zhang Y J and Ju L 2021 Chin. Phys. B 30 096102
[3] Yang W, Kan X C, Liu X S, Wang Z Z, Chen Z H, Wang Z, Zhu R W and Shezad M 2019 Ceram. Int. 45 23328
[4] Thakur V P, Chahar D, Taneja S, Bhalla N and Thakur A 2020 Ceram. Int. 46 15740
[5] Liu D, Gao S M, Jin R C, Wang F, Chu X X, Gao T P and Wang Y B 2019 Chin. Phys. B 28 057503
[6] Petrov I, Niemelä M, Ponomarev P and Pyrhönen J 2017 IEEE Trans. Indus. Electron. 64 5314
[7] Wu J G, Fan Z, Xiao D Q, Zhu J G and Wang J 2016 Pro. Mater. Sci. 84 335
[8] Liu P J, Yao Z J and Zhou J T 2016 Cream. Int. 42 9241
[9] Turchenko V, Kostishyn V G, Trukhanov S, Damay F, Porcher F, Balasoiu M, Lupu N, Bozzo B, Fina I, Trukhanov A, Waliszewski J, Recko K and Polosan S 2020 J. Alloys Compd. 821 153412
[10] Heidari P and Masoudpanah S M 2020 J. Mater. Res. Technol. 9 4469
[11] Nigam A and Pawar S J 2020 Ceram. Int. 46 4058
[12] Kulkarni R G and Panicker V G 1984 J. Mater. Sci. 19 890
[13] Akter S and Hakim M A 2010 Mater. Chem. Phys. 120 399
[14] Nath S K, Maria K H, Noor S, Siker S S, Hoque S M and Hakim M A 2012 J. Magn. Magn. Mater. 324 2116
[15] Gadkari A B, Shinde T J and Vasambekar P N 2009 Mater. Charact. 60 1328
[16] Gadkari A B, Shinde T J and Vasambekar P N 2010 J. Magn. Magn. Mater. 322 3823
[17] Kumbhar R N, Shinde T J, Kamble S A, Mathe V L and Ghodake J S 2021 Physica B 619 413161
[18] Boda N, Boda G and Naidu K C B 2019 J. Magn. Magn. Mater. 473 228
[19] Mohamed W S and Abu-Dief A M 2020 Ceram. Int. 46 16196
[20] Bhosale J L, Kulkarni S N, Sasmile R B and Chougule B K 1996 Bull. Mater. Sci. 19 767
[21] Wu X F, Ding Z, Song N G, Li L and Wang W 2016 Ceram. Int. 42 4246
[22] Abdellatif M H, El-Komy G M and Azab A A 2017 J. Magn. Magn. Mater. 442 445
[23] Yin Q, Liu Y, Liu Q, Wang Y, Chen J and Wang H 2019 J. Mater. Sci:Mater. Elec. 30 5430
[24] Chikazumi S and Charap S 1964 Physics of Magnetism (John Wiley & Sons) p. 153
[25] Gan G W, Zhang D N, Li J, Wang G, Huang X, Yang Y, Rao Y H, Xu F, Wang X Y, Zhang H W and Chen R T 2020 J. Alloys Compd. 819 153059
[26] Peng Y, Wu X H, Chen Z Y, Liu W H, Wang F, Wang X, Feng Z K, Chen Y J and Harris V G 2015 J. Alloys Compd. 630 48
[27] Bai Y, Zhou J, Gui Z L, Li L T and Qiao L J 2008 J. Alloys Compd. 450 412
[28] Li J, Wen D D, Li Q, Qiu T H, Gan G W and Zhang H W 2018 Ceram. Int. 44 678
[29] Ishaque, M, Khan M A, Ali I, Khan H M, Iqbal M A, Islam M U and Warsi M F 2015 Ceram. Int. 41 4028
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[3] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[4] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[5] Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage
Linling Luo(罗林龄), Xiaoqiu Ye(叶小球), Guanghui Zhang(张光辉), Huaqin Kou(寇化秦), Renjin Xiong(熊仁金), Ge Sang(桑革), Ronghai Yu(于荣海), Dongliang Zhao(赵栋梁). Chin. Phys. B, 2020, 29(8): 088801.
[6] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[7] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[8] Structural model of substitutional sulfur in diamond
Hongyu Yu(于洪雨), Nan Gao(高楠), Hongdong Li(李红东), Xuri Huang(黄旭日), Defang Duan(段德芳), Kuo Bao(包括), Mingfeng Zhu(朱明枫), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(8): 088102.
[9] Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route
Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani. Chin. Phys. B, 2019, 28(8): 088701.
[10] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[11] Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors
Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪). Chin. Phys. B, 2019, 28(3): 037103.
[12] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[13] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[14] Influence of Tb on easy magnetization direction and magnetostriction of PrFe1.9 alloy
Chang-Xuan He(何昌璇), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), Cai-Yan Lu(陆彩燕), Ze-Ping Guo(郭泽平). Chin. Phys. B, 2019, 28(11): 117501.
[15] Efficient image encryption scheme with synchronous substitution and diffusion based on double S-boxes
Xuan-Ping Zhang(张选平), Rui Guo(郭瑞), Heng-Wei Chen(陈恒伟), Zhong-Meng Zhao(赵仲孟), Jia-Yin Wang(王嘉寅). Chin. Phys. B, 2018, 27(8): 080701.
No Suggested Reading articles found!