INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance |
Pei Shen(沈培)1,2, Ying Wang(王颖)1,†, and Fei Cao(曹菲)1 |
1 The Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China; 2 The School of Mechanical and Electronic Engineering, Pingxiang University, Pingxiang 337055, China |
|
|
Abstract An optimized silicon carbide (SiC) trench metal-oxide-semiconductor field-effect transistor (MOSFET) structure with side-wall p-type pillar (p-pillar) and wrap n-type pillar (n-pillar) in the n-drain was investigated by utilizing Silvaco TCAD simulations. The optimized structure mainly includes a p$+$ buried region, a light n-type current spreading layer (CSL), a p-type pillar region, and a wrapping n-type pillar region at the right and bottom of the p-pillar. The improved structure is named as SNPPT-MOS. The side-wall p-pillar region could better relieve the high electric field around the p$+$ shielding region and the gate oxide in the off-state mode. The wrapping n-pillar region and CSL can also effectively reduce the specific on-resistance ($R_{\rm on,sp}$). As a result, the SNPPT-MOS structure exhibits that the figure of merit (FoM) related to the breakdown voltage ($V_{\rm BR}$) and $R_{\rm on,sp}$ ($V_{\rm BR}^{2}R_{\rm on,sp}$) of the SNPPT-MOS is improved by 44.5%, in comparison to that of the conventional trench gate SJ MOSFET (full-SJ-MOS). In addition, the SNPPT-MOS structure achieves a much faster-witching speed than the full-SJ-MOS, and the result indicates an appreciable reduction in the switching energy loss.
|
Received: 19 October 2021
Revised: 20 December 2021
Accepted manuscript online: 24 January 2022
|
PACS:
|
85.30.-z
|
(Semiconductor devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61774052 and 61904045), the National Natural Science Foundation of Jiangxi Province of China (Grant No. 20202BABL201021), and the Education Department of Jiangxi Province of China for Youth Foundation (Grant No. GJJ191154). |
Corresponding Authors:
Ying Wang
E-mail: wangying7711@yahoo.com
|
Cite this article:
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲) A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance 2022 Chin. Phys. B 31 078501
|
[1] Millan J, Godignon P, Perpina X, Perez-Tomas A and Rebollo J 2014 IEEE T. Power Electr. 29 2155 [2] Hudgins J L, Simin G S, Santi E and Khan M A 2003 IEEE T. Power Electr. 18 907 [3] Wang J, Zhao T, Li J and Huang A Q, Callanan R, Husna F and Agarwal A 2008 IEEE T. Electron Dev. 55 1798 [4] Ericson N, Frank S, Britton C, Marlino L and Ryu S H 2014 IEEE T. Power Electr. 29 539 [5] Agarwal A K, Casady J B, Rowland L B, Valek W F, White M H and Brandt C D 1997 IEEE Electron Dev. Lett. 18 586 [6] Zhang Q, Gomez M, Bui C and Hanna E 2005 in Proc. ISPSD, May 23-26, 2005, Santa Barbara, CA, USA, p. 211 [7] Sui Y, Tsuji T and Cooper J A 2005 IEEE Electron Dev. Lett. 26 255 [8] Agarwal A K, Siergiej R R, Seshadri S, White M H, McMullin P G, Burk A A, Rowland L B, Brandt C D and Hopkins R H 1996 in Proc. ISPSD, May 20-23, 1996, Maui, HI, USA, p. 119 [9] Tan J, Cooper J A and Melloch M R 1998 IEEE Electron Dev. Lett. 19 487 [10] Jiang H, Wei J, Dai X, Ke M, Deviny I and Mawby P 2016 IEEE Electron Dev. Lett. 37 1324 [11] Zhou X, Yue R, Zhang J, Dai G, Li J and Wang Y 2017 IEEE T. Electron Dev. 64 4568 [12] Tian K, Hallen A, Qi J, Ma S, Fei X, Zhang A and Liu W 2019 IEEE T. Electron Dev. 66 1 [13] Kagawa Y, Fujiwara1 N, Sugawaral K, Tanakal R, Fukui Y, YamamotoY, Miura N, Imaizumi M, Nakata S and Yamakawa S 2014 Mater. Sci. Forum. 778 919 [14] Li Y, Cooper J A and Capano M A 2002 IEEE T. Electron Dev. 49 972 [15] Cooper J A (US Patent) 6 180 958[2001-01-30] [16] Vudumula P, Pelluri S K and Kotamraju S 2019 Semicond. Sci. Tech. 34 015010.1 [17] Orouji A A, Jozi M and Fathipour M 2015 Mat. Sci. Semicon. Proc. 39 711 [18] Deng S, Hossain Z and Taniguchi T 2017 IEEE T. Electron Dev. 64 735 [19] Kim J and Kim K 2020 Semiconductors 54 587 [20] He Q Y, Luo X R, Liao T, Wei J, Deng G Q, Fang J and Yang F 2019 Superlattice. Microst. 125 58 [21] Ji S, Kosugi R, Kojima K, Mochizuki K, Saito S, Nagata A, Matsukawa Y, Yonezawa Y and Okumura H 2017 Appl. Phys. Express 10 055505 [22] Ji S Y, Kosugi R, Kojima K, Mochizuki K, Saito S, Nagata A, Matsukawa Y, Yonezawa Y and Okumura H 2017 Appl. Phys. Express 10 05550 [23] Mochizuki K, Ji S Y, Kosugi R, Kojima K, Yonezawa Y and Okumura H 2015 Appl. Phys. Express 9 035601 [24] Mochizuki K, Ji S, Kosugi R, Yonezawa Y and Okumura H 2017 in Proc. IEDM, December 2-6, 2017, San Francisco, CA, USA, p. 788 [25] Mochizuki K, Ji S, Kosugi R, Yonezawa Y and Okumura H 2018 in Proc. SISPAD, Sep. 24-26, 2018, Austin, USA, p. 331 [26] Kosugi R, Ji S, Mochizuki K, Adachi K, Segawa S, Kawada Y, Yonezawa Y and Okumura H 2019 in Proc. ISPSD, May 19-23, 2019, Shanghai, China, p. 39 [27] Masakazu O, Shinya K, Teruaki K, Jun S, Tadao M, Manabu T and Shinsuke H 2020 in Proc. ISPSD, September 13-28, 2020, Vienna, Austria, p. 70 [28] Wang C L and Sun J 2009 Chin. Phys. B 18 1231 [29] Zhang B, Xu Z and Huang A Q 2000 in Proc. ISPSD, May 22-25, 2000, Toulouse, France, p. 61 [30] Zhou X T, Jia Y P, Hu D Q and Wu Y 2019 IEEE T. Electron Dev. 66 2551 [31] Wang Y, Lin M, Li X J, Wu X, Yang J Q, Bao M T, Yu C H and Cao F 2019 IEEE T. Electron Dev. 66 4264 [32] Wang Y, Ma Y C, Hao Y, Hu Y, Wang G F and Cao F 2017 IEEE T. Electron Dev. 64 3719 [33] Shen P, Wang Y, Li X J, Yang J Q, Yu C H and Cao F 2021 Chin. Phys. B 30 058502 [34] Wang Y, K Tian, Hao Y, Yu C H and Liu Y J 2015 IEEE T. Electron Dev. 62 2774 [35] Zhou X W, Wong P L, Xu P and Lee F C 2000 IEEE T. Power Electr. 15 1172 [36] Shen Z J, David N O, Lin F Y, Anderson S and Cheng X 2006 IEEE T. Power Electr. 21 11 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|