Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 046106    DOI: 10.1088/1674-1056/ac5978
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots

Heng Yao(姚恒)1, Anjiang Lu(陆安江)1,†, Zhongchen Bai(白忠臣)1,2, Jinguo Jiang(蒋劲国)1, and Shuijie Qin(秦水介)1,‡
1 Guizhou Province Key Laboratory for Photoelectric Technology and Application, Guizhou University, Guiyang 550025, China;
2 College of Medicine, Guizhou University, Guiyang 550025, China
Abstract  To improve the stability and luminescence properties of CsPbBr3 QDs, we proposed a new core-shell structure for CsPbBr3/CdSe/Al quantum dots (QDs). By using a simple method of ion layer adsorption and a reaction method, CdSe and Al were respectively packaged on the surface of CsPbBr3 QDs to form the core-shell CsPbBr3/CdSe/Al QDs. After one week in a natural environment, the photoluminescence quantum yields of CsPbBr3/CdSe/Al QDs were greater than 80%, and the PL intensity remained at 71% of the original intensity. Furthermore, the CsPbBr3/CdSe/Al QDs were used as green emitters for white light-emitting diodes (LEDs), with the LEDs spectrum covering 129% of the national television system committee (NTSC) standard color gamut. The core-shell structure of QDs can effectively improve the stability of CsPbBr3 QDs, which has promising prospects in optoelectronic devices.
Keywords:  luminescence properties      stability      CsPbBr3/CdSe/Al quantum dots (QDs)      CsPbBr3 QDs  
Received:  27 November 2021      Revised:  26 January 2022      Accepted manuscript online:  02 March 2022
PACS:  61.46.-w (Structure of nanoscale materials)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 61865002 and 62065002); Project of Outstanding Young Scientific and Technological Talents of Guizhou Province, China (Grant No. QKEPTRC[2019]5650); Guizhou Province Science and Technology Platform and Talent Team Project, China (Grant No. QKEPTRC[2018]5616); and Central Government of China Guiding Local Science and Technology Development Plan (Grant No. QKZYD[2017]4004).
Corresponding Authors:  Anjiang Lu, Shuijie Qin     E-mail:  ajlu@gzu.edu.cn;shuijieqin@163.com

Cite this article: 

Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介) Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots 2022 Chin. Phys. B 31 046106

[1] Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee T W and Sargent E H 2019 Chem. Rev. 119 7444
[2] Wei Y, Xu Y, Wang Q, Wang J, Lu H and Zhu J 2020 Chem. Commun. (Camb) 56 5413
[3] Feng J G, Gong C, Gao H F, Wen W, Gong Y J, Jiang X Y, Zhang B, Wu Y C, Wu Y S, Fu H B, Jiang L and Zhang X 2018 Nat. Electron. 1 404
[4] Chu W, Saidi W A, Zhao J and Prezhdo O V 2020 Angew Chem. Int. Ed. Engl. 59 6435
[5] Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N and Mhaisalkar S G 2016 Adv. Mater. 28 6804
[6] Li Y, Shi Z F, Li X J and Shan C X 2019 Chin. Phys. B 28 017803
[7] Liu Z, Li C, Shang Q Y, Zhao L Y, Zhong Y G, Gao Y, Du W N, Mi Y, Chen J, Zhang S, Liu X F, Fu Y S and Zhang Q 2018 Chin. Phys. B 27 114209
[8] Chen B, Rudd P N, Yang S, Yuan Y and Huang J 2019 Chem. Soc. Rev. 48 3842
[9] Yoo J J, Wieghold S, Sponseller M C, Chua M R, Bertram S N, Hartono N T P, Tresback J S, Hansen E C, Correa-Baena J P, Bulovic V, Buonassisi T, Shin S S and Bawendi M G 2019 Energ. Environ. Sci. 12 2192
[10] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J and Kovalenko M V 2015 Nano Lett. 15 5635
[11] Wang P, Bai X, Sun C, Zhang X Y, Zhang T Q and Zhang Y 2016 Appl. Phys. Lett. 109 063106
[12] Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S and Lee J S 2016 Chem. Commun. (Camb) 52 2067
[13] Liu J H, Yang Z X, Ye B Q, Zhao Z W, Ruan Y S, Guo T L, Yu X B, Chen G X and Xu S 2019 J. Mater. Chem. C 7 4934
[14] Wei Y, Cheng Z and Lin J 2019 Chem. Soc. Rev. 48 310
[15] Zhong Q, Cao M, Hu H, Yang D, Chen M, Li P, Wu L and Zhang Q 2018 ACS Nano 12 8579
[16] Loiudice A, Saris S, Oveisi E, Alexander D T L and Buonsanti R 2017 Angew. Chem. Int. Ed. Engl. 56 10696
[17] Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z and Zheng W 2018 Adv. Funct. Mater. 28 1704288
[18] Li J, Xu L, Wang T, Song J, Chen J, Xue J, Dong Y, Cai B, Shan Q, Han B and Zeng H 2017 Adv. Mater. 29 1603885
[19] Brumberg A, Diroll B T, Nedelcu G, Sykes M E, Liu Y, Harvey S M, Wasielewski M R, Kovalenko M V and Schaller R D 2018 Nano Lett. 18 4771
[20] Dey S, Cohen H, Pinkas I, Lin H, Kazes M and Oron D 2019 J. Chem. Phys. 151 174704
[21] Ghosh G, Dutta A, Ghosh A, Ghosh S and Patra A 2020 J. Phys. Chem. C 124 10252
[22] Ahmed G H, Yin J, Bakr O M and Mohammed O F 2021 Acs Energy Lett. 6 1340
[23] Tang X, Yang J, Li S, Liu Z, Hu Z, Hao J, Du J, Leng Y, Qin H, Lin X, Lin Y, Tian Y, Zhou M and Xiong Q 2019 Adv. Sci. (Weinh) 6 1900412
[24] Ravi V K, Saikia S, Yadav S, Nawale V V and Nag A 2020 Acs Energy Lett. 5 1794
[25] Li Z C, Yao W, Kong L, Zhao Y X and Li L 2015 J. Am. Chem. Soc. 137 12430
[26] Koh S, Lee H, Lee T, Park K, Kim W J and Lee D C 2019 J. Chem. Phys. 151 144704
[27] Liu X, Zhang X, Yu S, Li L, Xu J, Gong X, Ding R, Zhang J and Yin H 2020 Nanotechnology 31 375703
[28] Cha J H, Han J H, Yin W, Park C, Park Y, Ahn T K, Cho J H and Jung D Y 2017 J. Phys. Chem. Lett. 8 565
[29] Calistru D M, Mihut L, Lefrant S and Baltog I 1997 J. Appl. Phys. 82 5391
[30] Tschirner N, Lange H, Schliwa A, Biermann A, Thomsen C, Lambert K, Gomes R and Hens Z 2012 Chem. Mat. 24 311
[31] Muduli S, Pandey P, Devatha G, Babar R, M T, Kothari D C, Kabir M, Pillai P P and Ogale S 2018 Angew. Chem. 130 7808
[32] Wang X, He J, Li J, Lu G, Dong F, Majima T and Zhu M 2020 Appl. Catalysis B 277 119230
[33] Lee J S, Kovalenko M V, Huang J, Chung D S and Talapin D V 2011 Nat. Nanotech. 6 348
[34] Smith A M and Nie S 2010 Acc. Chem. Res. 43 190
[35] Hunsur Ravikumar C, Maroli N, Kulkarni B, Kolandaivel P and Balakrishna R G 2022 Mater. Sci. Engin. 275 115513
[36] Niculescu E C and Cristea M 2013 J. Lumin. 135 120
[37] Huang S, Li Z, Kong L, Zhu N, Shan A and Li L 2016 J. Am. Chem. Soc. 138 5749
[38] Li X, Cao F, Yu D, Chen J, Sun Z, Shen Y, Zhu Y, Wang L, Wei Y, Wu Y and Zeng H 2017 Small 13 1603996
[39] Wang Y, Li X, Sreejith S, Cao F, Wang Z, Stuparu M C, Zeng H and Sun H 2016 Adv. Mater. 28 10637
[40] Sun C, Zhang Y, Ruan C, Yin C, Wang X, Wang Y and Yu W W 2016 Adv. Mater. 28 10088
[41] Ospina R, Rincón-Ortiz S A and Rodriguez-Pereira J 2020 Surface Sci. Spectra 27 014021
[42] Tago T, Kataoka N, Tanaka H, Kinoshita K and Kishida S 2017 Procedia Engin. 216 175
[43] Xiang Q, Meng G F, Zhang Y, Xu J Q, Xu P C, Pan Q Y and Yu W J 2010 Sensor Actuat B 143 635
[44] Loginova E, Cosandey F and Madey T E 2007 Surface Sci. 601 L11
[45] Shavorskiy A, Muller K, Newberg J T, Starr D E and Buhm H 2014 J. Phys. Chem. C 118 29340
[46] Li Z, Yao W, Kong L, Zhao Y and Li L 2015 J. Am. Chem. Soc. 137 12430
[47] Gao Y F, Nagai M, Masuda Y, Sato F, Seo W S and Koumoto K 2006 Langmuir 22 3521
[48] Cai N, Zhou G, Muller K and Starr D E 2011 Phys. Rev. Lett. 107 035502
[49] Chenakin S P, Silvy R P and Kruse N 2012 Topics in Catalysis 55 731
[50] Loiudice A, Strach M, Saris S, Chernyshov D and Buonsanti R 2019 J. Am. Chem. Soc. 141 8254
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[14] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[15] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
No Suggested Reading articles found!