Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 046301    DOI: 10.1088/1674-1056/ac280a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys

Yaocen Wang(汪姚岑)1,2,†, Ziyan Hao(郝梓焱)1,2, Yan Zhang(张岩)3,‡, Xiaoyu Liang(梁晓宇)4, Xiaojun Bai(白晓军)1, and Chongde Cao(曹崇德)1,2,§
1 School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2 Innovation Center of Northwestern Polytechnical University in Chongqing, Chongqing 401135, China;
3 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
4 Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
Abstract  L10-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe42Ni41.3Si8B4P4Cu0.7 amorphous alloy, and the L10-FeNi formation mechanism has been studied. It is found the L10-FeNi in annealed samples at 400 ℃ mainly originated from the residual amorphous phase during the second stage of crystallization which could take place over 60 ℃ lower than the measured onset temperature of the second stage with a 5 ℃/min heating rate. Annealing at 400 ℃ after fully crystallization still caused a slight increase of coercivity, which was probably contributed by the limited transformation from other high temperature crystalline phases towards L10 phase, or the removal of B from L10 lattice and improvement of the ordering quality of L10 phase due to the reduced temperature from 520 ℃ to 400 ℃. The first stage of crystallization has hardly direct contribution to L10-FeNi formation. Ab initio simulations show that the addition of Si or Co in L10-FeNi has the effect of enhancing the thermal stability of L10 phase without seriously deteriorating its magnetic hardness. The non-monotonic feature of direction dependent coercivity in ribbon segments resulted from the combination of domain wall pinning and demagnetization effects. The approaches of synthesizing L10-FeNi magnets by adding Si or Co and decreasing the onset crystallization temperature have been discussed in detail.
Keywords:  L10-FeNi      hard magnetic materials      amorphous alloys      ab initio simulation  
Received:  30 June 2021      Revised:  06 September 2021      Accepted manuscript online:  18 September 2021
PACS:  63.50.Lm (Glasses and amorphous solids)  
  67.80.dk (Magnetic properties, phases, and NMR)  
  75.30.Gw (Magnetic anisotropy)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 51971179 and 51971180), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0328), Shaanxi Provincial Natural Science Foundation, China (Grant No. 2020JM-112), Guangdong Provincial Science and Technology Program, China (Grant No. 2019B090905009), the Fundamental Research Funds for the Central Universities of China (Grant No. D5000210731), and Shaanxi Provincial Key R&D Program, China (Grant No. 2021KWZ-13). The computational work was performed on supercomputing system in Institute for Materials Research, Tohoku University.
Corresponding Authors:  Yaocen Wang, Yan Zhang, Chongde Cao     E-mail:  wangyc@nwpu.edu.cn;yzhang@nimte.ac.cn;caocd@nwpu.edu.cn

Cite this article: 

Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德) Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys 2022 Chin. Phys. B 31 046301

[1] Coey J M D 2002 J. Magn. Magn. Mater. 248 441
[2] Binnemans K, Jones P T, Blanpain B, Gerven T V, Yang Y, Walton A and Buchert M 2013 J. Clean. Prod. 51 1
[3] López-Ortega A, Estrader M, Salazar-Alvarez G, Roca A G and Nogués J 2015 J. Phys. Rep. 553 1
[4] Fischbacher J, Kovacs A, Gusenbauer M, Oezelt H, Exl L, Bance S and Schrefl T 2018 J. Phys. D:Appl. Phys. 51 193002
[5] Huang M Q, Wallace W E, McHenry M, Chen Q and Ma B M 1998 J. Appl. Phys. 83 6718
[6] Zhang Z, Song X, Qiao Y, Xu W, Zhang J, Seyring M and Rettenmayr M 2013 Nanoscale 5 2279
[7] Croat J J, Herbst J F, Lee R W and Pinkerton F E 1984 J. Appl. Phys. 55 2078
[8] Bernardi J, Fidler J, Sagawa M and Hirose Y 1998 J. Appl. Phys. 83 6396
[9] Paulevé J, Chamberod A, Krebs K and Bourret A 1968 J. Appl. Phys. 39 989
[10] Petersen J F, Aydin M and Knudsen J M 1977 Phys. Lett. A 62 192
[11] Lewis L H, Mubarok A, Poirier E, Bordeaux N, Manchanda P, Kashyap A, Skomski R, Goldstein J, Pinkerton F E, Mishra R K, Kubic R C Jr and Barmak K 2014 J. Phys.:Condens. Matter 26 064213
[12] Lewis L H, Pinkerton F E, Bordeaux N, Mubarok A, Poirier E, Goldstein J I, Skomski R and Barmak K 2014 IEEE Magn. Lett. 5 5500104
[13] Tashiro T, Mizuguchi M, Kojima T, Koganezawa T, Kotsugi M, Ohtsuki T, Sato K, Konno T and Takanashi K 2018 J. Alloys Compd. 750 164
[14] Shima T, Okamura M, Mitani S and Takanashi K 2007 J. Magn. Magn. Mater. 310 2213
[15] Saito M, Ito H, Suzuki Y, Mizuguchi M, Koganezawa T, Miyamachi T, Komori F, Takanashi K and Kotsugi M 2019 Appl. Phys. Lett. 114 072404
[16] Lee S, Edalati K, Iwaoka H, Horita Z, Ohtsuki T, Ohkochi T, Kotsugi M, Kojima T, Mizuguchi M and Takanashi K 2014 Philos. Mag. Lett. 94 639
[17] Geng Y, Ablekim T, Koten M A, Weber M, Lynn K and Shield J E 2015 J. Alloys Compd. 633 250
[18] Makino A, Sharma P, Sato K, Takeuchi A, Zhang Y and Takenaka K 2015 Sci. Rep. 5 16627
[19] Nosé S 1984 J. Chem. Phys. 81 511
[20] Kissinger H E 1957 Anal. Chem. 29 1702
[21] Suponev N P, Grechishkin R M, Lyakhova M B and Pushkar Y E 1996 J. Magn. Magn. Mater. 157 376
[22] Sharma P, Zhang Y and Makino A 2017 IEEE Trans. Magn. 53 2100910
[1] Ab initio molecular dynamics simulations of nano-crystallization of Fe-based amorphous alloys with early transition metals
Yao-Cen Wang(汪姚岑), Yan Zhang(张岩), Yoshiyuki Kawazoe, Jun Shen(沈军), Chong-De Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116401.
[2] Soft magnetic properties of amorphous Fe52Co34Hf7B6Cu1 alloy treated by pulsed magnetic field and annealing
Gu Yue (谷月), Chao Yue-Sheng (晁月盛), Zhang Yan-Hui (张艳辉). Chin. Phys. B, 2012, 21(12): 127805.
[3] Effect of annealing treatments on the microwave electromagnetic properties of amorphous FeCuNbSiB microwires
Liang Di-Fei(梁迪飞), Han Man-Gui(韩满贵), Yan Bo(鄢波), and Deng Long-Jiang(邓龙江). Chin. Phys. B, 2007, 16(2): 542-547.
[4] A comparative study of the structure and crystallization of bulk metallic amorphous rod Pr60Ni30Al10 and melt-spun metallic amorphous ribbon Al87Ni10Pr3
Meng Qing-Ge (孟庆格), Li Jian-Guo (李建国), Zhou Jian-Kun (周建坤). Chin. Phys. B, 2006, 15(7): 1549-1557.
[5] Effects of nickel on the crystallization of Zr70Cu20Ni10 amorphous alloy
Wang Huan-Rong (王焕荣), Ye Yi-Fu (叶以富), Zhang Jun-Yan (张均艳), Teng Xin-Ying (滕新营), Min Guang-Hui (闵光辉), Shi Zhi-Qiang (石志强), Tian Xue-Lei (田学雷). Chin. Phys. B, 2002, 11(6): 592-595.
[6] NANOSTRUCTURED MULTI-COMPONENT MATERIALS BY MECHANICAL ALLOYING
C. Politis, A.D. Spiliotis, V. Kapaklis, S. Baskoutas. Chin. Phys. B, 2001, 10(13): 27-30.
[7] NANOSTRUCTURED AND AMORPHOUS MATERIALS BY MECHANICAL ALLOYING
C. Politis. Chin. Phys. B, 2001, 10(13): 31-35.
No Suggested Reading articles found!