Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 024205    DOI: 10.1088/1674-1056/27/2/024205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Absorption linewidth inversion with wavelength modulation spectroscopy

Yue Yan(颜悦)1, Zhenhui Du(杜振辉)1, Jinyi Li(李金义)2, Ruixue Wang(王瑞雪)1
1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China;
2. Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tianjin Polytechnic University, Tianjin 300387, China
Abstract  For absorption linewidth inversion with wavelength modulation spectroscopy (WMS), an optimized WMS spectral line fitting method was demonstrated to infer absorption linewidth effectively, and the analytical expressions for relationships between Lorentzian linewidth and the separations of first harmonic peak-to-valley and second harmonic zero-crossing were deduced. The transition of CO2 centered at 4991.25 cm-1 was used to verify the optimized spectral fitting method and the analytical expressions. Results showed that the optimized spectra fitting method was able to infer absorption accurately and compute more than 10 times faster than the commonly used numerical fitting procedure. The second harmonic zero-crossing separation method calculated an even 6 orders faster than the spectra fitting without losing any accuracy for Lorentzian dominated cases. Additionally, linewidth calculated through second harmonic zero-crossing was preferred for much smaller error than the first harmonic peak-to-valley separation method. The presented analytical expressions can also be used in on-line optical sensing applications, electron paramagnetic resonance, and further theoretical characterization of absorption lineshape.
Keywords:  absorption linewidth      wavelength modulation spectroscopy      absorption spectroscopy      spectral line fitting      separation of harmonics  
Received:  02 November 2017      Revised:  30 November 2017      Accepted manuscript online: 
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  42.68.Ca (Spectral absorption by atmospheric gases)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61505142) and the Tianjin Natural Science Foundation (Grant No. 16JCQNJC02100).
Corresponding Authors:  Zhenhui Du     E-mail:  duzhenhui@tju.edu.cn
About author:  42.60.Fc; 42.68.Ca; 42.79.-e

Cite this article: 

Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪) Absorption linewidth inversion with wavelength modulation spectroscopy 2018 Chin. Phys. B 27 024205

[1] Deng Y, Pandian R P, Ahmad R, Kuppusamy P and Zweier J L 2006 J. Magn. Reson. 181 254
[2] Kaplan J I and Vasavada K V 1983 J. Magn. Reson. 52 475
[3] Eng R S and Mantz A W 1979 J. Mol. Spectrosc. 74 331
[4] Daneshvar L, F? ldes T, Buldyreva J and Auwera J V 2014 J. Quantum Spectrosc. Radiat. Transfer 149 258
[5] Linnerud I, Kaspersen P and Jaeger T 1998 Appl. Phys. B 67 297
[6] Rieker G B, Jeffries J B and Hanson R K 2009 Appl. Opt. 48 5546
[7] Vreede J P M D, Mehrotra S C, Tal A and Dijkerman H A 1982 Appl. Spectrosc. 36 227
[8] Reeves G K and Wilson G V H 1970 J. Phys. D:Appl. Phys. 3 1609
[9] Smith G W 1964 J. Appl. Phys. 35 1217
[10] Proffitt M H and Jr W C G 1977 J. Magn. Reson. 25 423
[11] Lepére M, Henry A, Valentin A and Camy-Peyret C 2001 J. Mol. Spectrosc. 208 25
[12] Owen K, Essebbar E and Farooq A 2013 J. Quantum Spectrosc. Radiat. Transfer 121 56
[13] Werhahn O 2014 Mol. Phys. 112 2451
[14] Du Z H, Zhen W M, Zhang Z Y, Li J Y and Gao N 2016 Appl. Phys. B 122 100
[15] Xiong B, Du Z H and Li J Y 2015 Rev. Sci. Instrum. 86 113104
[16] Che L, Ding Y J, Peng Z M, and Li X H 2012 Chin. Phys. B 21 127803
[17] Wei M, Ye Q H, Kan R F, et al. 2016 Chin. Phys. B 25 094210
[18] Stewart G, Johnstone W, Bain J R P, Ruxton K and Duffin K 2011 J. Lightw. Technol. 29 811
[19] Bain J R P, Johnstone W, Ruxton K, Stewart G, Lengden M and Duffin K 2011 J. Lightw. Technol. 29 987
[20] Setzer B J and Pickett H M 1977 J. Chem. Phys. 67 340
[21] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B and Hanson R K 2014 Appl. Opt. 53 356
[22] Supplee J M, Whittaker E A and Lenth W 1994 Appl. Opt. 33 6294
[23] Philippe L C and Hanson R K 1993 Appl. Opt. 32 6090
[24] Li H, Rieker G B, Liu X, Jeffries J B and Hanson R K 2006 Appl. Opt. 45 1052
[25] Liu Y, Lin J, Huang G, Guo Y and Duan C 2001 J. Opt. Soc. Am. B 18 666
[26] Olivero J J and Longbothum R L 1977 J. Quantum Spectrosc. Radiat. Transfer 17 233
[27] Tommasi E D, Castrillo A, Casa G and Gianfrani L 2008 J. Quantum Spectrosc. Radiat. Transfer 109 168
[28] Axner O, Kluczynski P and Lindberg Åsa 2001 J. Quantum Spectrosc. Radiat. Transfer 68 299
[29] Kluczynski P, Lindberg Å sa M and Axner O 2004 J. Quantum Spectrosc. Radiat. Transfer 83 345
[30] Wahlquist H 1961 J. Chem. Phys. 35 1708
[31] Arndt R 1965 J. Appl. Phys. 36 2522
[32] Reid J and Labrie D 1981 Appl. Phys. B 26 203
[33] Du Z H, Zhang Z Y, Zhen W M, Xiong B and Li J Y 2015 J. Atmos. Environ. Opt. 10 165
[34] Du Z H, Gao H and Cao X H 2016 Opt. Express 24 417
[35] Toth R A, Brown L R, Miller C E, Devi V M and Benner D C 2008 J. Quantum Spectrosc. Radiat. Transfer 109 906
[1] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[2] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[3] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[4] Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵). Chin. Phys. B, 2022, 31(1): 016702.
[5] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[6] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[7] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[8] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[9] Atmospheric N2O gas detection based on an inter-band cascade laser around 3.939 μm
Chun-Yan Sun(孙春艳), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Jing-Jing Wang(王静静), Gang Cheng(程刚), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2020, 29(1): 010704.
[10] Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS
Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎). Chin. Phys. B, 2019, 28(8): 084212.
[11] Hydrogen sulphide detection using near-infrared diode laser and compact dense-pattern multipass cell
Xing Tian(田兴), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Kun Liu(刘锟), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2019, 28(6): 063301.
[12] Novel infrared differential optical absorption spectroscopy remote sensing system to measure carbon dioxide emission
Ru-Wen Wang(王汝雯), Pin-Hua Xie(谢品华), Jin Xu(徐晋), Ang Li(李昂). Chin. Phys. B, 2019, 28(1): 013301.
[13] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[14] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[15] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
No Suggested Reading articles found!