Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 065202    DOI: 10.1088/1674-1056/27/6/065202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2

Dao-Man Han(韩道满)1, Yong-Xin Liu(刘永新)1,2, Fei Gao(高飞)1, Wen-Yao Liu(刘文耀)3, Jun Xu(徐军)1, You-Nian Wang(王友年)1
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
2 National Demonstration Center for Experimental Physics Education, Dalian University of Technology, Dalian 116024, China;
3 North University of China, Taiyuan 030051, China
Abstract  

Densities of Ar metastable states 1s5 and 1s3 are measured by using the tunable diode laser absorption spectroscopy (TDLAS) in Ar and Ar/O2 mixture dual-frequency capacitively coupled plasma (DF-CCP). We investigate the effects of high-frequency (HF, 60 MHz) power, low-frequency (LF, 2 MHz) power, and working pressure on the density of Ar metastable states for three different gas components (0%, 5%, and 10% oxygen mixed in argon). The dependence of Ar metastable state density on the oxygen content is also studied at different working pressures. It is found that densities of Ar metastable states in discharges with different gas components exhibit different behaviors as HF power increases. With the increase of HF power, the metastable density increases rapidly at the initial stage, and then tends to be saturated at a higher HF power. With a small fraction (5% or 10%) of oxygen added in argon plasma, a similar change of the Ar metastable density with HF power can be observed, but the metastable density is saturated at a higher HF power than in the pure argon discharge. In the DF-CCP, the metastable density is found to be higher than in a single frequency discharge, and has weak dependence on LF power. As working pressure increases, the metastable state density first increases and then decreases, and the pressure value, at which the density maximum occurs, decreases with oxygen content increasing. Besides, adding a small fraction of oxygen into argon plasma will significantly dwindle the metastable state density as a result of quenching loss by oxygen molecules.

Keywords:  argon metastable states      tunable diode laser absorption spectroscopy      capacitively coupled plasmas  
Received:  03 February 2018      Revised:  19 March 2018      Accepted manuscript online: 
PACS:  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  52.80.Vp (Discharge in vacuum)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11335004,11722541,11675039,and 11747153) and the Important National Science and Technology Specific Project,China (Grant No.2011ZX02403-001).

Corresponding Authors:  Yong-Xin Liu     E-mail:  yxliu129@dlut.edu.cn

Cite this article: 

Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年) Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2 2018 Chin. Phys. B 27 065202

[1] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York:Wiley-Interscience)
[2] Chabert P and Braithwaite N 2011 Physics of radio-frequency plasmas (Cambridge:Cambridge University Press)
[3] Sansonnens L, Howling A A, Hollenstein C, Dorier J-L and Kroll U 1994 J. Phys. D:Appl. Phys. 27 1406
[4] Zhang Y R, Xu X and Wang Y N 2010 Phys. Plasmas 17 033507
[5] Katori H and Shimizu F 1993 Phys. Rev. Lett. 70 3545
[6] Mityureva A A and Smirnov V V 2004 Opt. Spectrosc. 97 508
[7] Kitajima T, Nakano T and Makabe T 2006 Appl. Phys. Lett. 88 091501
[8] Mcmillin B K and Zachariah M R 1995 J. Appl. Phys. 77 5538
[9] Mcmillin B K and Zachariah M R 1996 J. Appl. Phys. 79 77
[10] Rauf S and Kushner M J 1997 J. Appl. Phys 82 2805
[11] Ohba T and Makabe T 2010 Appl. Phys. Lett. 96 111501
[12] Liu W Y, Xu Y, Liu Y X, Peng F, Guo Q, Li X S, Zhu A M and Wang Y N 2015 J. Appl. Phys. 117 023306
[13] Hayashi Y, Hirao S, Zhang Y, Gans T, O'Connell D, Petrović Z L and Makabe T 2009 J. Phys. D:Appl. Phys. 42 145206
[14] Bakowski B, Hancock G, Peverall R, Prince S E, Ritchie G A D and Thornton L J 2005 J. Phys. D:Appl. Phys. 38 2769
[15] Bol'shakov A A and Cruden B A 2008 Tech. Phys. 53 1423
[16] Sato T and Makabe T 2005 J. Appl. Phys 98 113304
[17] Muñoz J, Margot J and Calzada M D 2012 J. Appl. Phys. 111 023303
[18] Hübner S, Sadeghi N, Carbone E A D and van der Mullen J J A M 2013 J. Appl. Phys. 113 143306
[19] Bánó G and DonkóZ 2012 Plasma Sources Sci. Technol. 21 035011
[20] Belostotskiy S G, Ouk T, Donnelly V M, Economou D J and Sadeghi N 2011 J. Phys. D:Appl. Phys. 44 145202
[21] Cooley J, Xue J and Urdahl R 2012 J. Phys. D:Appl. Phys. 45 365201
[22] Liu J, Wen D Q, Liu Y X, Gao F, Lu W Q and Wang Y N 2013 J. Vac. Sci. Technol. A 31 061308
[23] Takechi K and Lieberman M A 2001 J. Appl. Phys. 90 3205
[24] Worsley M A, Bent S F, Fuller N C M and Dalton T 2006 J. Appl. Phys. 74 083301
[25] Lee C and Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368
[26] Lee S H, Iza F and Lee J K 2006 Phys. Plasmas 13 057102
[27] Liu J, Zhang Q Z, Liu Y X, Gao F and Wang Y N 2013 J. Phys. D:Appl. Phys. 46 235202
[28] Wang Y H, Liu W, Zhang Y R and Wang Y N 2015 Chin. Phys. B 24 095203
[29] Liu Y X, Liang Y S, Wen D Q, Bi Z H and Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013
[30] Dittmann K 2009 "Detailed Investigations of the Sheath Dynamics and Elementary Processes in Capacitively Coupled RF Plasmas", Ph. D. dissertation (Greifswald:University of Greifswald)
[31] Jiang X Z, Liu Y X, Bi Z H, Lu W Q and Wang Y N 2012 Acta Phys. Sin. 61 015204 (in Chinese)
[32] Piejak R B, Godyak V A, Garner R, Alexandrovich B M and Sternberg N 2004 J. Appl. Phys. 95 3785
[33] Piejak R B, Alkuzee J and Braithwaite N S J 2005 Plasma Sources Sci. Technol. 14 734
[34] Curley G A, Marić D, Booth J P, Corr C S, Chabert P and Guillon J 2007 Plasma Sources Sci. Technol. 16 S87
[35] Bukowski J D, Graves D B and Vitello P 1996 J. Appl. Phys. 80 2614
[36] Zhu X M and Pu Y K 2010 J. Phys. D:Appl. Phys. 43 403001
[37] Ferreira C M, Loureiro J and Ricard A 1985 J. Appl. Phys. 57 82
[38] Monahan D D and Turner M M 2008 Plasma Sources Sci. Technol. 17 045003
[1] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[2] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[3] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[4] Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure
Tagra Samir, Yue Liu(刘悦), Lu-Lu Zhao(赵璐璐), Yan-Wen Zhou(周艳文). Chin. Phys. B, 2017, 26(11): 115201.
[5] One-dimensional hybrid simulation of the electrical asymmetry effectcaused by the fourth-order harmonic in dual-frequencycapacitively coupled plasma
Shuai Wang(王帅), Hai-Feng Long(龙海凤), Zhen-Hua Bi(毕振华), Wei Jiang(姜巍), Xiang Xu(徐翔), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(11): 115202.
[6] Dynamic thermal modeling and parameter identification for monolithic laser diode module
Li Jin-Yi (李金义), Du Zhen-Hui (杜振辉), Ma Yi-Wen (马艺闻), Xu Ke-Xin (徐可欣). Chin. Phys. B, 2013, 22(3): 034203.
[7] Calibration-free wavelength modulation spectroscopy for gas concentration measurements under low-absorbance conditions
Che Lu (车璐), Ding Yan-Jun (丁艳军), Peng Zhi-Min (彭志敏), Li Xiao-Hang (李晓航). Chin. Phys. B, 2012, 21(12): 127803.
[8] Application of $\alpha$-$\beta$-$\gamma$ filtering to real-time atmosphere methane concentration measurement
Kan Rui-Feng (阚瑞峰), Liu Wen-Qing (刘文清), Zhang Yu-Jun (张玉钧), Liu Jian-Guo (刘建国), Chen Dong (陈东), Wang Min (王敏). Chin. Phys. B, 2006, 15(6): 1379-1383.
[9] Influence of laser intensity in second-harmonic detection with tunable diode laser multi-pass absorption spectroscopy
Kan Rui-Feng (阚瑞峰), Dong Feng-Zhong (董凤忠), Zhang Yu-Jun (张玉钧), Liu Jian-Guo (刘建国), Liu Cheng (刘诚), Wang Min (王敏), Gao Shan-Hu (高山虎), Chen Jun (陈军). Chin. Phys. B, 2005, 14(9): 1904-1909.
No Suggested Reading articles found!