Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 084212    DOI: 10.1088/1674-1056/28/8/084212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS

Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎)
School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
Abstract  A method for aerosol extinction profile retrieval using ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) is studied, which is based on a look-up table algorithm. The algorithm uses parametric method to represent aerosol extinction profiles and simulate different atmospheric aerosol states through atmospheric radiation transfer model. Based on the method, aerosol extinction profile was obtained during six cloud-free days. The O4 differential air mass factor (dAMF) measured by MAX-DOAS is compared with the corresponding model results under different atmospheric conditions (R2=0.78). The aerosol optical thickness, aerosol weight factor in boundary layer, and the height of the boundary layer are obtained after the process of minimization and look-up table method. The retrieved aerosol extinction in boundary layer is compared with PM2.5 data measured by ground point instrument. The diurnal variation trends of the two methods are in good agreement. The correlation coefficients of the two methods are 0.71 when the aerosol optical thickness is smaller than 0.5. The results show that the look-up table method can obtain the aerosol state of the troposphere and provide validation for other instrument data.
Keywords:  vertical profile of aerosol extinction      look-up table      O4      differential air mass factor      multi-axis differential optical absorption spectroscopy  
Received:  14 March 2019      Revised:  18 May 2019      Accepted manuscript online: 
PACS:  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  87.64.K- (Spectroscopy)  
  95.75.Rs (Remote observing techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41875040, 41705012, and 1605013).
Corresponding Authors:  Suwen Li     E-mail:  swli@chnu.edu.cn

Cite this article: 

Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎) Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS 2019 Chin. Phys. B 28 084212

[1] Rosenfeld D 2006 Science 312 1323
[2] Che H, Yang Z, Zhang X, Zhu C, Ma Q and Zhou H 2009 Atmos. Environ. 43 1093
[3] Ramanathan V, Crutzen P J, Kiehl J T and Rosenfeld D 2001 Science 294 2119
[4] Wei M H, Tong M M and Li S W 2015 Chin. J. Chem. Phys. 28 688
[5] Wagner T, Dix B and Friedeburg C V 2016 Atmos. Meas. Tech. 9 3205
[6] Frieß U, Baltink H K and Beirle S 2016 Atmos. Meas. Tech. 9 3205
[7] Frieß U, Monks P S and Remedios J J 2006 J. Geophys. Res. 111 D14203
[8] Wagner T, Beirle S and Brauers T 2011 Atmos. Meas. Tech. 4 2685
[9] Wang Y, Lampel J and Xie P H 2017 Atmos. Chem. Phys. 17 2189
[10] Li X, Brauers T and Hofzumahaus A 2010 Atmos. Chem. Phys. 10 2079
[11] Li X, Brauers T and Shao M 2010 Atmos. Chem. Phys. 10 2079
[12] Wu F C, Xie P H and Li A 2013 Acta Opt. Sin. 33 0601002
[13] Wang Y, Beirle S and Lampel J 2017 Atmos. Chem. Phys. 17 5007
[14] Mou F S, Luo J, Li S W, Wang J W, Shi R R, Wei M H 2018 Acta Photon. Sin. 47 0701002
[15] Deutschmann T, Beirle S and Frieß U 2011 J. Quantum Spectrosc. Radiat. Transfer 112 1119
[16] Kraus S 2016 Atmos. Meas. Tech. 9 5089
[17] Wang S S, Cuevas C A and Frieß U 2016 Atmos. Meas. Tech. 9 5089
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[3] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[4] Incommensurate-commensurate magnetic phase transition in double tungstate Li2Co(WO4)2
Xiyu Chen(陈西煜), Ning Ding(丁宁), Meifeng Liu(刘美风), Tao Zou(邹涛), V. Ovidiu Garlea, Jingwen Gong(龚婧雯), Fei Liu(刘飞), Yunlong Xie(谢云龙), Lun Yang(杨伦), Shuhan Zheng(郑书翰), Xiuzhang Wang(王秀章), Shuai Dong(董帅), T. Charlton, and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2022, 31(4): 047501.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[7] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[8] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[9] Pressure dependence of the thermal stability in LiMn2O4
Yan Zeng(曾彦), Hao Liang(梁浩), Shixue Guan(管诗雪), Junpu Wang(王俊普), Wenjia Liang(梁文嘉), Mengyang Huang(黄梦阳), and Fang Peng(彭放). Chin. Phys. B, 2022, 31(1): 016104.
[10] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[11] Hierarchical lichee-like Fe3O4 assemblies and their high heating efficiency in magnetic hyperthermia
Wen-Yu Li(李文宇), Wen-Tao Li(李文涛), Bang-Quan Li(李榜全), Li-Juan Dong(董丽娟), Tian-Hua Meng(孟田华), Ge Huo(霍格), Gong-Ying Liang(梁工英), and Xue-Gang Lu(卢学刚). Chin. Phys. B, 2021, 30(10): 104402.
[12] A review of some new perspectives on the theory of superconducting Sr2RuO4
Wen Huang(黄文). Chin. Phys. B, 2021, 30(10): 107403.
[13] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[14] Quasiparticle interference testing the possible pairing symmetry in Sr2RuO4
Cong-Cong Zhang(张聪聪), Jin-Hua Sun(孙金华), Yang Yang(杨阳), Wan-Sheng Wang(王万胜). Chin. Phys. B, 2020, 29(6): 067401.
[15] Passively Q-switched diode-pumped Tm, Ho: LuVO4 laser with a black phosphorus saturable absorber
Linjun Li(李林军), Tianxin Li(李天鑫), Long Zhou(周龙), Jianying Fan(范剑英), Yuqiang Yang(杨玉强), Wenqiang Xie(谢文强), Shasha Li(李莎莎). Chin. Phys. B, 2019, 28(9): 094205.
No Suggested Reading articles found!