CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles study of plasmons in doped graphene nanostructures |
Xiao-Qin Shu(舒晓琴)1, Xin-Lu Cheng(程新路)2, Tong Liu(刘彤)3, and Hong Zhang(张红)2,† |
1 College of Mathematics and Physics, Leshan Normal College, Leshan 614000, China; 2 College of Physics, Sichuan University, Chengdu 610065, China; 3 School of Science, Xihua University, Chengdu 610065, China |
|
|
Abstract The operating frequencies of surface plasmons in pristine graphene lie in the terahertz and infrared spectral range, which limits their utilization. Here, the high-frequency plasmons in doped graphene nanostructures are studied by the time-dependent density functional theory. The doping atoms include boron, nitrogen, aluminum, silicon, phosphorus, and sulfur atoms. The influences of the position and concentration of nitrogen dopants on the collective stimulation are investigated, and the effects of different types of doping atoms on the plasmonic stimulation are discussed. For different positions of nitrogen dopants, it is found that a higher degree of symmetry destruction is correlated with weaker optical absorption. In contrast, a higher concentration of nitrogen dopants is not correlated with a stronger absorption. Regarding different doping atoms, atoms similar to carbon atom in size, such as boron atom and nitrogen atom, result in less spectral attenuation. In systems with other doping atoms, the absorption is significantly weakened compared with the absorption of the pristine graphene nanostructure. Plasmon energy resonance dots of doped graphene lie in the visible and ultraviolet spectral range. The doped graphene nanostructure presents a promising material for nanoscaled plasmonic devices with effective absorption in the visible and ultraviolet range.
|
Received: 10 December 2020
Revised: 28 January 2021
Accepted manuscript online: 24 February 2021
|
PACS:
|
68.65.Pq
|
(Graphene films)
|
|
71.35.Cc
|
(Intrinsic properties of excitons; optical absorption spectra)
|
|
31.15.ee
|
(Time-dependent density functional theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974253), the National Key Research and Development Program of China (Grant No. 2017YFA0303600), and the Scientific Research Project of Leshan Normal University, China (Grant Nos. XJR17007, LZDP012, and DGZZ202009). |
Corresponding Authors:
Hong Zhang
E-mail: hongzhang@scu.edu.cn
|
Cite this article:
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红) First-principles study of plasmons in doped graphene nanostructures 2021 Chin. Phys. B 30 097301
|
[1] Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q and Fan C 2010 ACS Nano 4 4317 [2] Ruiz O N, Fernando K A S, Wang B J, Brown N A, Luo P G, McNamara N, Vangsness M, Sun Y P and Bunker C E 2011 ACS Nano 5 8100 [3] Liao K H, Y. S. Lin, Macosko C W and Haynes C L 2011 Appl. Mater. Inter. 3 2607 [4] Li N, Zhang X M, Song Q, Su R G, Zhang Q, Kong T, Liu L W, Jin G, Tang M L and Cheng G S 2011 Biomaterials 32 9374 [5] Lee W C, Lim C H Y X, Shi H, Tang L A L, Wang Y, Lim C T and Loh K P 2011 ACS Nano 5 7334 [6] Wang Y X, Yang Q, Liu C, Wang G X, Wu M, Liu H, Sui Y M and Yang X Y 2020 Chin. Phys. Lett. 37 058201 [7] Min S K, Kim W Y, Cho Y and Kim K S 2011 Nat. Nanotechnol. 6 162 [8] Yuk Y J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A and Alivisatos A P 2012 Science 336 61 [9] Schwierz F 2010 Nat. Nanotechnol. 5 487 [10] Myung S, Park J, Lee H, Kim K S and Hong S 2010 Adv. Mater. 22 2045 [11] Ni G X, Zheng Y, Bae S, Tan C Y, Kahya O, Wu J, Hong B H, Yao K and Özyilmaz B 2012 ACS Nano 6 3935 [12] Lee W H, Park J, Sim S H, Lim S, Kim K S, Hong B H and Cho K 2011 J. Am. Chem. Soc. 133 4447 [13] Park S Y, Park J, Sim S H, Sung M G, Kim K S, Hong B H and Hong S 2011 Adv. Mater. 23 H263 [14] Cohen-Tanugi D and Grossman J C 2012 Nano Lett. 12 3602 [15] Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y and Hu Z Y 2018 Chin. Phys. Lett. 35 067101 [16] Huh S, Park J, Kim K S, Hong B H and Kim S B 2011 ACS Nano 5 3639 [17] Lee W H, Park J, Kim Y, Kim K S, Hong H and Cho K 2011 Adv. Mater. 23 3460 [18] Song Z P, Zhu H O, Shi W T, Sun D L and Ruan S C 2018 Chin. Phys. Lett. 35 127801 [19] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611 [20] Pisula W and BVMullen K 2007 Chem. Rev. 107 718 [21] Shao Y, Wang J, Wu H, Liu J, Assay I A and Lin Y 2010 Electroanalysis 22 1027 [22] Tao R, Li L, Zhu L J, Yan Y D, Guo L H, Fan X D and Zeng C G 2020 Chin. Phys. Lett. 37 077301 [23] Ren X X, Kang W, Cheng Z F and Zheng R L 2016 Chin. Phys. Lett. 33 126501 [24] Goenka S, Sant V and Sant S 2014 J. Control. Release 173 75 [25] Liu J, Cui L and Losic D 2013 Acta Biomater. 9 9243 [26] Zhou X F, Fang H Y and Tang C M 2019 Acta Phys. Sin. 68 053601 (in Chinese) [27] He Z Z, Yang K W, Yu C, Liu Q B, Wang J J, Song X B, Han T T, Feng Z H and Cai S J 2016 Chin. Phys. Lett. 33 086801 [28] Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z and Jin Z 2010 Biomacromolecules 11 2345 [29] Bose S, Kuila T, Uddin, M E, Kim N H, Lau A K T and Lee J H 2010 Polymer 51 5921 [30] Chu Y H, Zhu F D, Wen Z L, Chen W Y, Chen Q N and Ma T X 2020 Chin. Phys. B 29 117401 [31] Xu F and Zhang L 2019 Chin. Phys. B 28 117403 [32] Gu Q Y, Xing D Y and Sun J 2019 Chin. Phys. Lett. 36 097401 [33] Tang R, Yang Xu Y, Zhang H and Cheng X L 2021 Chin. Phys. B 30 017804 [34] Liu Z K, Xie Y N, Geng L, D K and Song P 2016 Chin. Phys. Lett. 33 027802 [35] Li G, Cheng H W, Guo L F, Wang K Y and Cheng Z J 2018 Chin. Phys. Lett. 35 076801 [36] Xiao S, Zhu X, Li B H and Mortensen N A 2016 Front. Phys. 11 117801 [37] Viola G, Wenger T, Kinaret J and Fogelström M 2017 New J. Phys. 19 073027 [38] Huang S, Song C, Zhang G and Yan H 2017 Nanophotonics 6 1191 [39] García de Abajo F J 2014 ACS Photon. 1 135 [40] Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749 [41] Principi A, Vignale G, Carrega M and Polini M 2013 Phys. Rev. B 88 121405 [42] Novko D 2017 Nano Lett. 17 6991 [43] Luo W W, Cai W, Wu W, Xiang Y X, Ren M X, Zhang X Z and Xu J J 2016 2D Mater. 3 045001 [44] Zhang C, Fu L, Liu N, Liu M, Wang Y and Liu Z 2011 Adv. Mater. 23 1020 [45] Bangert U, Pierce W, Kepaptsoglou D M, Ramasse, Zan Q R, Gass M H, Van den Berg J A, Boothroyd C B, Amani J and Hofsass H 2013 Nano Lett. 13 4902 [46] Casolo S, Martinazzo R, Tantardini G F 2011 J. Phys. Chem. C 115 3250 [47] Zhou Y C, Zhang H L and Deng W Q 2013 Nanotechnology 24 225705 [48] Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V and Rao C N R 2009 Adv. Mater. 21 4726 [49] Wang H B, Maiyalagan T and Wang X 2012 ACS Catal. 781 [50] Ramasse Q M, Seabourne C R, Kepaptsoglou D M, Zan R, Bangert U and Scott A J 2013 Nano Lett. 13 4989 [51] Kepaptsoglou D, Hardcastle T P, Seabourne C R, Bangert U, Zan, Amani J A, Hofsass H, Nicholls R J, Brydson R M D, Scott A J and Ramasse Q M 2015 ACS Nano 9 11398 [52] Schiros T, Nordlund D, Palova L, Prezzi D, Zhao L, Kim K S, Wurstbauer U, Gutierrez C, Delongchamp D, Jaye C, Fischer D, Ogasawara H, Pettersson L G M, Reichman D R, Kim P, Hybertsen M S and Pasupathy A N 2012 Nano Lett. 12 4025 [53] Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60 [54] Luo X G, Qiu T, Lu W B and Ni Z H 2013 Mater. Sci. Eng. R. 74 351 [55] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [56] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 [57] Yabana K and Bertsch G F 1996 Phys. Rev. B 54 4484 [58] Delley B 1990 J. Chem. Phys. 92 508 [59] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [60] Shu X Q, Zhang H, Cheng X L and Miyamoto Y 2016 Phy. Rev. B 93 195424 [61] Chen Y, Yang X C, Liu Y J, Zhao J X, Cai Q H and Wang X Z 2013 J. Mol. Gr. Model. 39 126 [62] Ao Z, Yang J, Li S and Jiang Q 2008 Chem. Phys. Lett. 461 276 [63] Sharma S and Verma A S 2013 Physica B 427 12 [64] Ganji M D, Sharifi N, Ardjmand M and Ahangari M G 2012 Appl. Surf. Sci. 261 697 [65] Zhang H, Luo X, Song H, Lin X, Lu X and Tang Y 2014 Appl. Surf. Sci. 317 511 [66] Wang W D, Zhang Y X, Shen C L and Chai Y 2016 AIP. Adv. 6 025317 [67] Li H T, Liu Y Q and Zhu D B 2011 J. Mater. Chem. 21 3335 [68] Qu L T; Liu Y, Baek J B and Dai L M 2010 ACS Nano 4 1321 [69] Sheng Z H, Tao L, Chen J J, Bao W J, Wang F B and Xia X H 2011 ACS Nano 5 4350 [70] Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X and Huang S 2012 ACS Nano 6 205 [71] Shahrokhi M and Leonard C 2017 J. Alloys Comd. 693 1185 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|