Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024301    DOI: 10.1088/1674-1056/ac1b81
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simulation of detection and scattering of sound waves by the lateral line of a fish

V M Adamyan1, I Y Popov2,†, I V Blinova2, and V V Zavalniuk1,3
1 Odessa I. I. Mechnikov National University, Dvoryanskaya Str. 2, Odesa, 65082, Ukraine;
2 ITMO University, Kronverkskiy, 49, Saint Petersburg, 197101, Russia;
3 Odessa Military Academy, 10 Fontanska Road, Odesa 65009, Ukraine
Abstract  A solvable model of lateral line of a fish based on a wave equation with additional boundary conditions on a set of isolated points is proposed. Within the framework of this model it is shown that the ratio of pressures on lateral lines on different fish flanks, as well as the cross section of sound scattering on both the lines, strongly depends on angles of incidence of incoming sound waves. The strong angular dependence of the pressure ratio seems to be sufficient for the fish to determine the directions from which the sound is coming.
Keywords:  acoustic equation      point self-adjoint perturbations of Laplace operator      scattering      lateral line  
Received:  06 March 2021      Revised:  12 July 2021      Accepted manuscript online:  07 August 2021
PACS:  43.20.Fn (Scattering of acoustic waves)  
  02.30.Tb (Operator theory)  
Fund: This work was supported by the Ministry of Education and Science of Ukraine (Grant No. 0115U003208). The authors thank Dr. R. Fricke for useful advice.
Corresponding Authors:  I Y Popov     E-mail:  popov1955@gmail.com

Cite this article: 

V M Adamyan, I Y Popov, I V Blinova, and V V Zavalniuk Simulation of detection and scattering of sound waves by the lateral line of a fish 2022 Chin. Phys. B 31 024301

[1] Popper A N, Hawkins A D, Sand O and Sisneros J A 2019 J. Acoust. Soc. Am. 146 948
[2] Coffin A B, Zeddies D G, Fay R R et al. 2014 J. Exp. Biol. 217 2078
[3] Dijkgraaf S 1962 Biol. Rev. 38 51
[4] Webb J F 2011 Encyclopedia of fish physiology:from genome to environment 1st edn (London:Academic Press) pp. 336-346
[5] Jiang Y, Ma Z and Zhang D 2019 Bioinspir. Biomim. 14 041001
[6] Maruska K P 2001 The behavior and sensory biology of elasmobranch fishes:An anthology in memory of Donald Richard Nelson (Berlin:Springer) pp. 47-75
[7] Zeddies D G, Fay R R and Sisneros J A 2011 Encyclopedia of fish physiology:From genome to environment 1st edn (London:Academic Press) pp. 298-303
[8] Yoshizawa M, Jeffery W R, van Netten S M and McHenry M G 2014 J. Exp. Biol. 217 886
[9] Jiang Y, Fu J, Zhang D and Zhao Y 2016 J. Bion. Engin. 13 108
[10] Hawkins A D and Popper A N 2018 J. Acoust. Soc. Am. 144 3329
[11] Cardinal E A, Radford C A, Mensinger A F 2018 J. Exp. Biol. 221 jeb180679
[12] Denton E J, Gray J A B and Blaxter J H S 1976 J. Mar. Biol. Assoc. UK 59 27
[13] Finneran J J and Hastings M C 2000 J. Acous. Soc. Am. 108 1308
[14] Kalmijn A J 1988 Sensory biology of animals (New York:Springer-Verlag) p. 131
[15] Mann D A, Lu Z and Popper A N 1997 Nature 389 341
[16] Carpenter K E, Berra T M and Humphries Jr. J M 2004 J. Morphol. 260 193
[17] Ramcharitar J U, Deng X, Ketten D and Popper A N 2004 J. Comparative Neurol. 475 531
[18] Lychakov D V and Rebane Y T 2000 Hear Res. 143 83
[19] Schuijf A and Buwalda R J A 1975 J. Comparative Physiol. A 98 333
[20] Popov I Y and Popova S L 1995 Biophysics 40 443
[21] Popov I Y and Popova S L 1997 Italian J. Pure Appl. Math. 20 83
[22] Albeverio S, Gesztesy F, Hoegh-Krohn R and Holden H, with an appendix by Exner P 2005 Solvable models in quantum mechanics 2nd edn (Providence R.I.:AMS Chelsea Publishing)
[23] Van Netten S M 2006 Biol. Cybern. 94 67
[24] Goulet J, Engelmann J, Chagnaud B P et al. 2008 J. Comp. Physiol. A 194 1
[25] Mogdans J and Bleckmann H 2012 Biol. Cybern 106 627
[26] Ristroph L, Liao J C and Zhang J 2015 Phys. Rev. Lett. 114 018102
[27] Herzog H, Klein B and Ziegler A 2017 J. R. Soc. Interface 14 20160898
[28] Oteiza P, Odstrcil I, Lauder G et al. 2017 Nature 547 445
[29] Brasche J, Exner P and Kuperin Yu A and Seba P 1994 J. Math. Anal. Appl. 184 112
[30] Popov I Y 1992 Math. USSR-Sbornik 71 209
[31] Popov I Y 1992 J. Math. Phys. 33 3794
[32] Popov I Y and Popova S L 1993 Europhys. Lett. 24 373
[33] Popov I Y and Popova S L 1993 Phys. Lett. A 173 484
[34] Blaxter J H S 1987 Biol. Rev. 62 471
[35] Mantile A, Posilicano A and Sini M 2016 J. Different. Equ. 261 1
[36] Pavlov B S 1987 Russian Math. Surveys 42 127
[37] Popov I Y, Adamyan V M, Blinova I V and Popov A I 2015 Nanosystems:Phys. Chem. Math. 6 611
[38] Adamyan V M, Popov I Y and Blinova I V 2016 Electron. J. Theor. Phys. 13 173
[39] Liu G, Wang A, Wang X and Liu P 2016 Appl. Bion. Biomech. 2016 4732703
[40] Zhai Y, Zheng X and Xie G 2021 J. Bion. Engin. 18 264
[41] Merino-Martinez R, Sijtsma P, Snellen M et al. 2019 CEAS Aeronaut. J. 10 197
[42] Chen N N, Tucker C, Engel J M, Yang Y C, Pandya S and Liu C 2007 J. Microelectromech. Sys. 16 999
[43] Shu Y, Tian H, Wang Z et al. 2015 Chin. Phys. Lett. 32 114301
[44] Jiang Y G, Ma Z Q, Fu J C and Zhang D Y 2017 Sensors 17 1220
[45] Liu G J, Liu S K, Wang S R, Hao H H and Wang M M 2019 J. Bion. Engin. 16 1007
[46] Liu G J, Gao S X, Sarkodie-Gyan T and Li Z X 2018 Measur. Sci. Technol. 29 125102
[47] Zheng X, Wang C, Fan R and Xie G 2018 Bioinspir. Biomim. 13 016002
[48] Tang Z J, Wang Z, Lu J Q, Ma G Q and Zhang P F 2019 Electronics 8 566
[49] Sharif M A and Tan X 2019 Bioinspir. Biomim. 14 055003
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[6] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[10] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[11] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[12] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[13] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[14] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[15] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
No Suggested Reading articles found!