Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017301    DOI: 10.1088/1674-1056/ac1410
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dependence of short channel length on negative/positive bias temperature instability (NBTI/PBTI) for 3D FinFET devices

Ren-Ren Xu(徐忍忍)1,2,3, Qing-Zhu Zhang(张青竹)1,2, Long-Da Zhou(周龙达)1,2,3, Hong Yang(杨红)1,2,3,†, Tian-Yang Gai(盖天洋)1,2,3, Hua-Xiang Yin(殷华湘)1,2,3,‡, and Wen-Wu Wang(王文武)1,2,3
1 Integrated Circuit Advanced Process Center(ICAC), Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 Key Laboratory of Microelectronics Devices&Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A comprehensive study of the negative and positive bias temperature instability (NBTI/PBTI) of 3D FinFET devices with different small channel lengths is presented. It is found while with the channel lengths shrinking from 100 nm to 30 nm, both the NBTI characteristics of p-FinFET and PBTI characteristics of n-FinFET turn better. Moreover, the channel length dependence on NBTI is more serious than that on PBTI. Through the analysis of the physical mechanism of BTI and the simulation of 3-D stress in the FinFET device, a physical mechanism of the channel length dependence on NBTI/PBTI is proposed. Both extra fluorine passivation in the corner of bulk oxide and stronger channel stress in p-FinFETs with shorter channel length causes less NBTI issue, while the extra nitrogen passivation in the corner of bulk oxide induces less PBTI degradation as the channel length decreasing for n-FinFETs. The mechanism well matches the experimental result and provides one helpful guide for the improvement of reliability issues in the advanced FinFET process.
Keywords:  bias temperature instability (BTI)      channel length      stress      FinFET  
Received:  05 May 2021      Revised:  08 July 2021      Accepted manuscript online:  14 July 2021
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.Tv (Field effect devices)  
Fund: Project supported in part by the Science and Technology Program of Beijing Municipal Science and Technology Commission, China (Grant No. Z201100004220001), the National Major Project of Science and Technology of China (Grant No. 2017ZX02315001), and the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (Grant Nos. Y9YS05X002 and E0YS01X001).
Corresponding Authors:  Hong Yang, Hua-Xiang Yin     E-mail:  yanghong@ime.ac.cn;yinhuaxiang@ime.ac.cn

Cite this article: 

Ren-Ren Xu(徐忍忍), Qing-Zhu Zhang(张青竹), Long-Da Zhou(周龙达), Hong Yang(杨红), Tian-Yang Gai(盖天洋), Hua-Xiang Yin(殷华湘), and Wen-Wu Wang(王文武) Dependence of short channel length on negative/positive bias temperature instability (NBTI/PBTI) for 3D FinFET devices 2022 Chin. Phys. B 31 017301

[1] Wang Y, Yang H, Xu H, Wang X, Luo C, Qi L, Zhang S, Wang W, Yan J and Zhu H 2015 Chin. Phys. B 24 117306
[2] Ren S, Yang H, Wang W, Tang B, Tang Z, Wang X, Xu H, Luo W, Zhao C and Yan J 2015 Chin. Phys. B 24 077304
[3] Qi L, Yang H, Ren S, Xu Y, Luo W, Xu H, Wang Y, Tang B, Wang W and Yan J 2015 Chin. Phys. B 24 127305
[4] Zeng Y, Li X, Qing J, Sun Y, Shi Y, Guo A and Hu S 2017 Chin. Phys. B 26 108503
[5] Tang H L, Xu B L, Zhuang Y Q, Zhang L and Li C 2016 Acta Phys. Sin. 65 168502 (in Chinese)
[6] Gerrer L, Ding J, Amoroso S M, Adamu-Lema F, Hussin R, Reid D, Millar C and Asenov A 2014 Microelectron. Reliability 54 682
[7] Cellere G, Valentini M and Paccagnella A 2004 International Conference on Integrated Circuit Design and Technology (IEEE Cat. No. 04EX866), Austin, TX, USA, pp. 303-306
[8] Liu C, Lv J W, Wu W R, Tang X Y, Zhang R, Yu W J, Wang X and Zhao Y 2015 Acta Phys. Sin. 64 167305 (in Chinese)
[9] Zheng Q W, Cui J W, Zhou H, Yu D Z, Yu X F and Guo Q 2016 Chin. Phys. Lett. 33 076102
[10] He Y T, Qiao M, Li L, Dai G, Zhang B and Li Z J 2016 Chin. Phys. Lett. 33 097101
[11] Wu W, Lu J, Liu C, Wu H, Tang X, Sun J, Zhang R, Yu W, Wang X and Zhao Y 2016 Microelectron. Reliability 62 79
[12] Pae S, Maiz J, Prasad C and Woolery B 2008 IEEE T. Device Mat. Re. 8 519
[13] Kang P, Yew T, Shih K, Hsieh M, Chou W, Fu C, Huang Y, Wang W, Peng Y and Lee Y 2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, pp. 4C-3.1-4C-3.5
[14] Liao J, Fang Y, Hou Y, Hung C, Hsu P, Lin K, Huang K, Lee T and Liang M 2008 Appl. Phys. Lett. 93 092101
[15] Jin L and Xu M 2008 2nd IEEE International Nanoelectronics Conference, Shanghai, China, pp. 597-600
[16] Alimin A M, Hatta S W M and Soin N 2016 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, pp. 272-275
[17] Seo J, Kim G, Son D, Lee N, Kang Y and Kang B 2016 Jpn. J. Appl. Phys. 55 08PD03
[18] Xiong K, Robertson J, Gibson M and Clark S 2005 Appl. Phys. Lett. 87 183505
[19] Xiong K, Robertson J and Clark S 2006 J. Appl. Phys. 99 044105
[20] Zhao Y P, Wang C, Zheng X F, Ma X H, Liu K, Li A, He Y L and Hao Y 2020 Chin. Phys. B 29 087304
[21] Liu X Y, Hao J L, You N N, Bai Y, Tang Y D, Yang C Y and Wang S K 2020 Chin. Phys. B 29 037301
[22] Liu Y, Liu K, Chen R S, Liu Y R, En Y F, Li B and Fang W X 2017 Chin. Phys. Lett. 34 018501
[23] Tiwari R, Parihar N, Thakor K, Wong H Y, Motzny S, Choi M, Moroz V and Mahapatra S 2019 IEEE Trans. Electron Devices. 66 2086
[24] Tiwari R, Parihar N, Thakor K, Wong H Y, Motzny S, Choi M, Moroz V and Mahapatra S 2019 IEEE Trans. Electron Devices. 66 2093
[25] Zhang Q, Li J, Tu H, Yi H, Yan J, Meng L, Yao J, Wang G, Cao Z and Li Y 2018 China Semiconductor Technology International Conference (CSTIC), March 11-12, 2018, Shanghai, China, pp. 1-3
[26] Zhou L, Tang B, Yang H, Xu H, Li Y, Simoen E, Yin H, Zhu H, Zhao C and Wang W 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, 2018 July 16-19, pp. 1-6
[27] Chang H, Zhou L, Yang H, Ji Z, Liu Q, Simoen E, Yin H and Wang W 2021 IEEE International Reliability Physics Symposium (IRPS), March 21-24, 2021, Monterey, CA, USA, pp. 1-5
[28] Schroder D K and Babcock J A 2003 Journal of Applied Physics 94 1
[29] Cao Y, He W, Cao C, Yang Y, Zheng X, Ma X and Hao Y 2014 Chin. Phys. B 23 117303
[30] Liao J, Fang Y, Hou Y, Hung C, Hsu P, Lin K, Huang K, Lee T and Liang M 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), April 23-25 2007, Hsinchu, Taiwan, pp. 1-2
[31] Takeuchi K, Nagumo T, Yokogawa S, Imai K and Hayashi Y 2009 Symposium on VLSI Technology, June 15-17 2009, Kyoto, Japan, pp. 54-55
[32] Zhou L, Wang G, Yin X, Ji Z, Liu Q, Xu H, Yang H, Simoen E, Wang X and Ma X 2020 Microelectron. Reliability 107 113627
[1] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[2] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[5] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[6] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[7] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[8] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[9] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[10] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[11] Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs
Shao-Hua Yang(杨少华), Zhan-Gang Zhang(张战刚), Zhi-Feng Lei(雷志锋), Yun Huang(黄云), Kai Xi(习凯), Song-Lin Wang(王松林), Tian-Jiao Liang(梁天骄), Teng Tong(童腾), Xiao-Hui Li(李晓辉), Chao Peng(彭超), Fu-Gen Wu(吴福根), and Bin Li(李斌). Chin. Phys. B, 2022, 31(12): 126103.
[12] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[13] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[14] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[15] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
No Suggested Reading articles found!