CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Dependence of short channel length on negative/positive bias temperature instability (NBTI/PBTI) for 3D FinFET devices |
Ren-Ren Xu(徐忍忍)1,2,3, Qing-Zhu Zhang(张青竹)1,2, Long-Da Zhou(周龙达)1,2,3, Hong Yang(杨红)1,2,3,†, Tian-Yang Gai(盖天洋)1,2,3, Hua-Xiang Yin(殷华湘)1,2,3,‡, and Wen-Wu Wang(王文武)1,2,3 |
1 Integrated Circuit Advanced Process Center(ICAC), Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 2 Key Laboratory of Microelectronics Devices&Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract A comprehensive study of the negative and positive bias temperature instability (NBTI/PBTI) of 3D FinFET devices with different small channel lengths is presented. It is found while with the channel lengths shrinking from 100 nm to 30 nm, both the NBTI characteristics of p-FinFET and PBTI characteristics of n-FinFET turn better. Moreover, the channel length dependence on NBTI is more serious than that on PBTI. Through the analysis of the physical mechanism of BTI and the simulation of 3-D stress in the FinFET device, a physical mechanism of the channel length dependence on NBTI/PBTI is proposed. Both extra fluorine passivation in the corner of bulk oxide and stronger channel stress in p-FinFETs with shorter channel length causes less NBTI issue, while the extra nitrogen passivation in the corner of bulk oxide induces less PBTI degradation as the channel length decreasing for n-FinFETs. The mechanism well matches the experimental result and provides one helpful guide for the improvement of reliability issues in the advanced FinFET process.
|
Received: 05 May 2021
Revised: 08 July 2021
Accepted manuscript online: 14 July 2021
|
PACS:
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported in part by the Science and Technology Program of Beijing Municipal Science and Technology Commission, China (Grant No. Z201100004220001), the National Major Project of Science and Technology of China (Grant No. 2017ZX02315001), and the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (Grant Nos. Y9YS05X002 and E0YS01X001). |
Corresponding Authors:
Hong Yang, Hua-Xiang Yin
E-mail: yanghong@ime.ac.cn;yinhuaxiang@ime.ac.cn
|
Cite this article:
Ren-Ren Xu(徐忍忍), Qing-Zhu Zhang(张青竹), Long-Da Zhou(周龙达), Hong Yang(杨红), Tian-Yang Gai(盖天洋), Hua-Xiang Yin(殷华湘), and Wen-Wu Wang(王文武) Dependence of short channel length on negative/positive bias temperature instability (NBTI/PBTI) for 3D FinFET devices 2022 Chin. Phys. B 31 017301
|
[1] Wang Y, Yang H, Xu H, Wang X, Luo C, Qi L, Zhang S, Wang W, Yan J and Zhu H 2015 Chin. Phys. B 24 117306 [2] Ren S, Yang H, Wang W, Tang B, Tang Z, Wang X, Xu H, Luo W, Zhao C and Yan J 2015 Chin. Phys. B 24 077304 [3] Qi L, Yang H, Ren S, Xu Y, Luo W, Xu H, Wang Y, Tang B, Wang W and Yan J 2015 Chin. Phys. B 24 127305 [4] Zeng Y, Li X, Qing J, Sun Y, Shi Y, Guo A and Hu S 2017 Chin. Phys. B 26 108503 [5] Tang H L, Xu B L, Zhuang Y Q, Zhang L and Li C 2016 Acta Phys. Sin. 65 168502 (in Chinese) [6] Gerrer L, Ding J, Amoroso S M, Adamu-Lema F, Hussin R, Reid D, Millar C and Asenov A 2014 Microelectron. Reliability 54 682 [7] Cellere G, Valentini M and Paccagnella A 2004 International Conference on Integrated Circuit Design and Technology (IEEE Cat. No. 04EX866), Austin, TX, USA, pp. 303-306 [8] Liu C, Lv J W, Wu W R, Tang X Y, Zhang R, Yu W J, Wang X and Zhao Y 2015 Acta Phys. Sin. 64 167305 (in Chinese) [9] Zheng Q W, Cui J W, Zhou H, Yu D Z, Yu X F and Guo Q 2016 Chin. Phys. Lett. 33 076102 [10] He Y T, Qiao M, Li L, Dai G, Zhang B and Li Z J 2016 Chin. Phys. Lett. 33 097101 [11] Wu W, Lu J, Liu C, Wu H, Tang X, Sun J, Zhang R, Yu W, Wang X and Zhao Y 2016 Microelectron. Reliability 62 79 [12] Pae S, Maiz J, Prasad C and Woolery B 2008 IEEE T. Device Mat. Re. 8 519 [13] Kang P, Yew T, Shih K, Hsieh M, Chou W, Fu C, Huang Y, Wang W, Peng Y and Lee Y 2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, pp. 4C-3.1-4C-3.5 [14] Liao J, Fang Y, Hou Y, Hung C, Hsu P, Lin K, Huang K, Lee T and Liang M 2008 Appl. Phys. Lett. 93 092101 [15] Jin L and Xu M 2008 2nd IEEE International Nanoelectronics Conference, Shanghai, China, pp. 597-600 [16] Alimin A M, Hatta S W M and Soin N 2016 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, pp. 272-275 [17] Seo J, Kim G, Son D, Lee N, Kang Y and Kang B 2016 Jpn. J. Appl. Phys. 55 08PD03 [18] Xiong K, Robertson J, Gibson M and Clark S 2005 Appl. Phys. Lett. 87 183505 [19] Xiong K, Robertson J and Clark S 2006 J. Appl. Phys. 99 044105 [20] Zhao Y P, Wang C, Zheng X F, Ma X H, Liu K, Li A, He Y L and Hao Y 2020 Chin. Phys. B 29 087304 [21] Liu X Y, Hao J L, You N N, Bai Y, Tang Y D, Yang C Y and Wang S K 2020 Chin. Phys. B 29 037301 [22] Liu Y, Liu K, Chen R S, Liu Y R, En Y F, Li B and Fang W X 2017 Chin. Phys. Lett. 34 018501 [23] Tiwari R, Parihar N, Thakor K, Wong H Y, Motzny S, Choi M, Moroz V and Mahapatra S 2019 IEEE Trans. Electron Devices. 66 2086 [24] Tiwari R, Parihar N, Thakor K, Wong H Y, Motzny S, Choi M, Moroz V and Mahapatra S 2019 IEEE Trans. Electron Devices. 66 2093 [25] Zhang Q, Li J, Tu H, Yi H, Yan J, Meng L, Yao J, Wang G, Cao Z and Li Y 2018 China Semiconductor Technology International Conference (CSTIC), March 11-12, 2018, Shanghai, China, pp. 1-3 [26] Zhou L, Tang B, Yang H, Xu H, Li Y, Simoen E, Yin H, Zhu H, Zhao C and Wang W 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, 2018 July 16-19, pp. 1-6 [27] Chang H, Zhou L, Yang H, Ji Z, Liu Q, Simoen E, Yin H and Wang W 2021 IEEE International Reliability Physics Symposium (IRPS), March 21-24, 2021, Monterey, CA, USA, pp. 1-5 [28] Schroder D K and Babcock J A 2003 Journal of Applied Physics 94 1 [29] Cao Y, He W, Cao C, Yang Y, Zheng X, Ma X and Hao Y 2014 Chin. Phys. B 23 117303 [30] Liao J, Fang Y, Hou Y, Hung C, Hsu P, Lin K, Huang K, Lee T and Liang M 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), April 23-25 2007, Hsinchu, Taiwan, pp. 1-2 [31] Takeuchi K, Nagumo T, Yokogawa S, Imai K and Hayashi Y 2009 Symposium on VLSI Technology, June 15-17 2009, Kyoto, Japan, pp. 54-55 [32] Zhou L, Wang G, Yin X, Ji Z, Liu Q, Xu H, Yang H, Simoen E, Wang X and Ma X 2020 Microelectron. Reliability 107 113627 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|