Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 014302    DOI: 10.1088/1674-1056/ac70ba
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues

Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对)
Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles and surrounding tissues. Therefore, the cavitation dynamics and resultant mechanical stress of two-interacting bubbles in the viscoelastic tissues are numerically investigated, especially focusing on the effects of the adjacent bubble. The results demonstrate that the mechanical stress is highly dependent on the bubble dynamics. The compressive stress and tensile stress are generated at the stage of bubble expansion and collapse stage, respectively. Furthermore, within the initial parameters examined in this paper, the effects of the adjacent bubble will distinctly suppress the radial expansion of the small bubble and consequently lead its associated stresses to decrease. Owing to the superimposition of two stress fields, the mechanical stresses surrounding the small bubble in the direction of the neighboring bubble are smaller than those in other directions. For two interacting cavitation bubbles, the suppression effects of the nearby bubble on both the cavitation dynamics and the stresses surrounding the small bubble increase as the ultrasound amplitude and the initial radius of the large bubble increase, whereas they decrease with the inter-bubble distance increasing. Moreover, increasing the tissue viscoelasticity will reduce the suppression effects of the nearby bubble, except in instances where the compressive stress and tensile stress first increase and then decrease with the tissue elasticity and viscosity increasing respectively. This study can provide a further understanding of the mechanisms of cavitation-associated mechanical damage to the adjacent tissues or cells.
Keywords:  cavitation dynamics      cavitation-induced mechanical stress      effects of the nearby bubble      viscoelastic tissues  
Received:  31 March 2022      Revised:  25 April 2022      Accepted manuscript online:  18 May 2022
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  47.55.dd (Bubble dynamics)  
  87.50.Y- (Biological effects of acoustic and ultrasonic energy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904042), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyjmsxmX0534), and the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN202000617).
Corresponding Authors:  Dui Qin     E-mail:  duiqin@cqupt.edu.cn

Cite this article: 

Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对) Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues 2023 Chin. Phys. B 32 014302

[1] Brennen C E 2014 Cavitation and bubble dynamics (Cambridge: Cambridge University Press) pp. 196–197
[2] Wan M, Feng Y and ter Haar G 2015 Cavitation in biomedicine(Springer) pp. 1–5
[3] Yusof N S M, Babgi B, Alghamdi Y, Aksu M, Madhavan J and Ashokkumar M 2016 Ultrason. Sonochem. 29 568
[4] Bhargava N, Mor R S, Kumar K and Sharanagat V S 2021 Ultrason. Sonochem. 70 105293
[5] Al Sawaftah N M and Husseini G A 2020 J. Nanosci. Nanotechnol. 20 7211
[6] Teng X D, Guo X S, Tu J and Zhang D 2016 Chin. Phys. B 25 124308
[7] Stride E and Coussios C 2019 Nat. Rev. Phys. 1 495
[8] Zhang D Y, Wan Y, Xu J Y, Wu G H, Li L and Yao X H 2016 Carbohydr. Polym. 137 473
[9] Ahmadi A, Hosseini Nami S, Abed Z, Beik J, Aranda Lara L, Samadian H, Morales-Avila E, Jaymand M and Shakeri Zadeh A 2020 Drug Discov. Today 12 2182
[10] Yu J, Chen Z and Yan F 2019 Prog. Biophys. Mol. Biol. 142 1
[11] Novell A, Kamimura H, Cafarelli A, Gerstenmayer M, Flament J, Valette J, Agou P, Conti A, Selingue E and Badin R A 2020 Sci. Rep. 10 1
[12] Suo D, Jin Z, Jiang X, Dayton P A and Jing Y 2017 Appl. Phys. Lett. 110 023703
[13] Zhang L, Wang X D, Liu X Z and Gong X F 2015 Chin. Phys. B 24 014301
[14] Maxwell A D, Cain C A, Duryea A P, Yuan L, Gurm H S and Xu Z 2009 Ultrasound Med. Biol. 35 1982
[15] Yuan F, Yang C and Zhong P 2015 Proc. Nat. Acad. Sci. 112 E7039
[16] Vlaisavljevich E, Maxwell A, Mancia L, Johnsen E, Cain C and Xu Z 2016 Ultrasound Med. Biol. 42 2466
[17] Qin D, Zhang L, Chang N, Ni P, Zong Y, Bouakaz A, Wan M and Feng Y 2018 Ultrason. Sonochem. 47 141
[18] Mancia L, Vlaisavljevich E, Xu Z and Johnsen E 2017 Ultrasound Med. Biol. 43 1421
[19] Mancia L, Vlaisavljevich E, Yousefi N, Rodriguez M, Ziemlewicz T J, Lee F T, Henann D, Franck C, Xu Z and Johnsen E 2019 Phys. Med. Biol. 64 225001
[20] Edsall C, Khan Z M, Mancia L, Hall S, Mustafa W, Johnsen E, Klibanov A L, Durmaz Y Y and Vlaisavljevich E 2021 Ultrasound Med. Biol. 47 620
[21] Zilonova E, Solovchuk M and Sheu T 2018 Ultrason. Sonochem. 40 900
[22] Zilonova E, Solovchuk M and Sheu T 2019 Phys. Rev. E 99 023109
[23] Zilonova E, Solovchuk M and Sheu T 2019 Ultrason. Sonochem. 53 11
[24] Rezaee N, Sadighi Bonabi R, Mirheydari M and Ebrahimi H 2011 Chin. Phys. B 20 087804
[25] Wang D and Naranmandula 2018 Acta Phys. Sin. 67 037802 (in Chinese)
[26] Zhang Y L, Zheng H R, Tang M X and Zhang D 2011 Chin. Phys. B 20 114302
[27] Liang J F, Wu X Y, Yu A, Chen W Z and Wang J 2020 Chin. Phys. B 29 097801
[28] Zhang L L, Chen W Z, Shen Y, Wu Y R, Zhao G J and Kou S Y 2022 Chin. Phys. B 31 044303
[29] Qinghim and Naranmandula 2019 Acta Phys. Sin. 68 234302 (in Chinese)
[30] Mo R Y, Wang C H, Hu J and Chen S 2019 Acta Phys. Sin. 68 144302 (in Chinese)
[31] Li X, Chen Y, Feng H and Qi L 2020 Acta Phys. Sin. 69 184703 (in Chinese)
[32] Zhang L L, Chen W Z, Zhang Y Y, Wu Y R, Wang X and Zhao G Y 2020 Chin. Phys. B 29 034303
[33] Chen H, Lai Z, Chen Z and Li Y 2019 Ultrason. Sonochem. 52 344
[34] Qin D, Zou Q, Lei S, Wang W and Li Z 2021 Ultrason. Sonochem. 78 105712
[35] Zhang L L, Chen W Z, Wu Y R, Shen Y and Zhao G Y 2021 Chin. Phys. B 30 104301
[36] Shen Y, Zhang L, Wu Y and Chen W 2021 Ultrason. Sonochem. 73 105535
[37] Wang C H and Cheng J C 2013 Chin. Phys. B 22 014304
[38] Estrada J B, Barajas C, Henann D L, Johnsen E and Franck C 2018 J. Mech. Phys. Solids 112 291
[39] Estrada J B, Luetkemeyer C M, Scheven U M and Arruda E M 2020 Exp. Mech. 60 907
[40] Gaudron R, Murakami K and Johnsen E 2020 J. Mech. Phys. Solids 143 104047
[41] Gaudron R, Warnez M and Johnsen E 2015 J. Fluid Mech. 766 54
[42] Kanthale P M, Brotchie A, Ashokkumar M and Grieser F 2008 Ultrason. Sonochem. 15 629
[43] Hegedüs F, Klapcsik K, Lauterborn W, Parlitz U and Mettin R 2020 Ultrason. Sonochem. 67 105067
[44] Kalmár C, Klapcsik K and Hegedüs F 2020 Ultrason. Sonochem. 64 104989
[45] Kanthale P M, Gogate P R and Pandit A B 2007 Chem. Eng. J. 127 71
[46] Qin D, Zou Q, Li Z, Wang W, Wan M and Feng Y 2021 Acta Phys. Sin. 70 148 (in Chinese)
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[3] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[6] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[7] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[8] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[9] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[10] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[11] Characterization of inner layer thickness change of a composite circular tube using nonlinear circumferential guided wave:A feasibility study
Ming-Liang Li(李明亮), Guang-Jian Gao(高广健), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2021, 30(8): 084301.
[12] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[13] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[14] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[15] Computation and analysis of light emission in two-bubble sonoluminescence
Jin-Fu Liang(梁金福), Xue-You Wu(吴学由), Yu An(安宇), Wei-Zhong Chen(陈伟中), Jun Wang(王军). Chin. Phys. B, 2020, 29(9): 097801.
No Suggested Reading articles found!