Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017302    DOI: 10.1088/1674-1056/ac0795
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations

Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟)
School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250100, China
Abstract  Exploring silicon-based spin modulating junction is one of the most promising areas of spintronics. Using nonequilibrium Green's function combined with density functional theory, a set of spin filters of hydrogenated zigzag silicene nanoribbons is designed by substituting a silicon atom with a boron one and the spin-correlated transport properties are studied. The results show that the spin polarization can be realized by structural symmetry breaking induced by boron doping. Remarkably, by tuning the edge hydrogenation, it is found that the spin filter efficiency can be varied from 30% to 58%. Moreover, it is also found and explained that the asymmetric hydrogenation can give rise to an obvious negative differential resistance which usually appears at weakly coupled junction. These findings indicate that the boron-doped ZSiNR is a promising material for spintronic applications.
Keywords:  silicene nanoribbons      spin filtering effect      negative differential resistance  
Received:  25 March 2021      Revised:  27 May 2021      Accepted manuscript online:  03 June 2021
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.25.-b (Spin polarized transport)  
  72.80.Vp (Electronic transport in graphene)  
Fund: Project supported by the National Natural Science Foundations of China (Grant No. 11574118) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019PEM006).
Corresponding Authors:  Jing-Fen Zhao     E-mail:  jingfenzhao@163.com

Cite this article: 

Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟) Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations 2022 Chin. Phys. B 31 017302

[2] Fleurence A and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[3] Meng L, Wang Y, Zhang L, Zhang Y and Gao H J 2013 Nano Lett. 13 685
[4] Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
[5] Cahangirov S and Topsakal M 2009 Phys. Rev. Lett. 102 236804
[6] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[7] Huang S, Kang W and Yang L 2013 Appl. Phys. Lett. 102 133106
[8] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[9] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[10] Xu C Y, Luo G F, Zheng J X, Zhang Z M and Lu J 2012 Nanoscale 4 3111
[11] Houssa M, Dimoulas A and Molle A 2015 J. Phys.: Condens. Matter 27 253002
[12] Xiang H, Kan E and Yang J 2009 Nano Lett. 9 4025
[13] Cai J M, Pignedoli C A, Talirz L 2014 Nat. Nanotechnol. 11 896
[14] Zou D Q, Cui B and Liu D S 2015 Phys. Chem. Chem. Phys. 17 11292
[15] Ren Y and Chen K Q 2010 J. Appl. Phys. 107 044514
[16] Sahin H, Cahangirov S, Topsakal M, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[17] Fan Z Q, Xie F, Jiang X W, Wei Z M and Li S S 2016 Carbon 110 200
[18] Fan Z Q, Sun W Y, Jiang X W and Long M Q 2017 Carbon 113 18
[19] Cahangirov S and Topsakal M 2009 Phys. Rev. Lett. 102 236804
[20] Deng X Q, Zhang Z H, Fan Z Q and Yang C H 2014 RSC Adv. 4 58941
[21] Cahangirov S, Topsakal M and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[22] Kara A, Enriquez H, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1
[23] De Padova P, Perfetti P, Olivieri B, Quaresima C, Ottaviani C and Le Lay G 2012 J. Phys.: Condens. Matter 24 223001
[24] Ni Z, Liu Q, Tang K, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[25] Kang J, Wu F and Li J 2012 Appl. Phys. Lett. 100 233122
[26] Pan L, Liu H J and Zheng G 2012 Phys. Chem. Chem. Phys. 14 13588
[27] Yang X F, Liu Y S and Chi F 2014 J. Appl. Phys. 116 124312
[28] Luan H X, Zhang C W and Wang P J 2013 J. Phys. Chem. C 117 13620
[29] Fang D Q, Zhang S L and Xu H 2013 RSC Adv. 3 24075
[30] Zheng F B, Zhang C W, Yan S S and Li F 2013 J. Mater. Chem. C 1 2735
[31] Ding Y and Wang Y 2013 Appl. Phys. Lett. 102 143115
[32] Zhang D, Long M Q and Zhang X J 2014 Chem. Phys. Lett. 616 178
[33] Zeng J, Chen K Q, He J, Zhang X J and Sun C Q 2011 J. Phys. Chem. C 115 25072
[34] Zhao J F, Fang C F, Cui B and Liu D S 2017 Org. Electron. 41 333
[35] Chen A B, Wang X F and Liu Y S 2014 Phys. Chem. Chem. Phys. 16 5113
[36] Hu G C, Zuo M Y and Xie S J 2014 Appl. Phys. Lett. 104 033302
[37] Brandbyge M, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[38] Soler J M, Artacho E, Junquera J and Ordejon P 2002 J. Phys.: Condens. Matter 14 2745
[39] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 121104
[40] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[41] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[42] Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett. 100 206802
[43] Fan Z Q, Deng X Q, Tang G P and Chen K Q 2013 Appl. Phys. Lett. 102 023508
[44] Xie Fang, Fan Z Q, Liu K, Yu J H and Chen K Q 2015 Org. Electron. 27 41
[1] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[2] Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony
Fangdong Tang(汤方栋), Qianheng Du(杜乾衡), Cedomir Petrovic, Wei Zhang(张威), Mingquan He(何明全), Liyuan Zhang(张立源). Chin. Phys. B, 2019, 28(3): 037104.
[3] 4.3 THz quantum-well photodetectors with high detection sensitivity
Zhenzhen Zhang(张真真), Zhanglong Fu(符张龙), Xuguang Guo(郭旭光), Juncheng Cao(曹俊诚). Chin. Phys. B, 2018, 27(3): 030701.
[4] Effects of edge hydrogenation and Si doping on spin-dependent electronic transport properties of armchair boron-phosphorous nanoribbons
Hong Zhao(赵虹), Dan-Dan Peng(彭丹丹), Jun He(何军), Xin-Mei Li(李新梅), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2018, 27(10): 108504.
[5] Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures
Shenyan Feng(冯申艳), Qiaoxuan Zhang(张巧璇), Jie Yang(杨洁), Ming Lei(雷鸣), Ruge Quhe(屈贺如歌). Chin. Phys. B, 2017, 26(9): 097401.
[6] Characteristics of Li diffusion on silicene and zigzag nanoribbon
Yan-Hua Guo(郭艳华), Jue-Xian Cao(曹觉先), Bo Xu(徐波). Chin. Phys. B, 2016, 25(1): 017101.
[7] Spin and valley filter in strain engineered silicene
Wang Sa-Ke (汪萨克), Wang Jun (汪军). Chin. Phys. B, 2015, 24(3): 037202.
[8] High performance oscillator with 2-mW output power at 300 GHz
Wu De-Qi (武德起), Ding Wu-Chang (丁武昌), Yang Shan-Shan (杨姗姗), Jia Rui (贾锐), Jin Zhi (金智), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2014, 23(5): 057204.
[9] Negative differential resistance behaviour in N-doped crossed graphene nanoribbons
Chen Ling-Na(陈灵娜), Ma Song-Shan(马松山), Ouyang Fang-Ping(欧阳方平), Wu Xiao-Zan(伍小赞), Xiao Jin(肖金), and Xu Hui(徐慧). Chin. Phys. B, 2010, 19(9): 097301.
[10] Relationship between the electric performance and the photoluminescence spectra of resonant tunnelling diodes
Zhang Xiao-Xin (张晓昕), Zeng Yi-Ping (曾一平), Wang Xiao-Guang (王晓光), Wang Bao-Qiang (王保强), Zhu Zhan-Ping (朱占平). Chin. Phys. B, 2004, 13(9): 1560-1563.
No Suggested Reading articles found!