Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034601    DOI: 10.1088/1674-1056/ac1931
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface

Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽)
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Abstract  Studying the evolution of interface contact state, revealing the "black box" behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accuracy of mechanical system performance. Based on the principle of total reflection, a visual analysis technology of interface contact behavior is proposed. Considering the dynamic variation of stress distribution in interface contact, we analyze the nonlinear characteristics of contact parameters in different stages of stick-slip process using the above-mentioned experimental technology. Then, we find that the tangential stiffness of the interface is not a fixed value during the stick-slip process and the stress distribution variation is one of the important factors affecting the tangential stiffness of interface. Based on the previous experimental results, we present an improved stick-slip friction model, considering the change of tangential stiffness and friction coefficient caused by the stress distribution variation. This improved model can characterize the variation characteristics of contact parameters in different stages of stick-slip process, whose simulation results are in good agreement with the experimental data. This research may be valuable for improving the prediction accuracy of mechanical system performance.
Keywords:  stress distribution      tangential stiffness      friction coefficient      stick-slip      friction model  
Received:  08 June 2021      Revised:  12 July 2021      Accepted manuscript online:  30 July 2021
PACS:  46.55.+d (Tribology and mechanical contacts)  
  42.30.Va (Image forming and processing)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11872033) and the Beijing Natural Science Foundation, China (Grant No. 3172017).
Corresponding Authors:  Shaoze Yan     E-mail:  yansz@mail.tsinghua.edu.cn

Cite this article: 

Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽) Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface 2022 Chin. Phys. B 31 034601

[1] Vakis A I, Yastrebov V A, Scheibert J, Nicola L, Dini D et al. 2018 Tribol. Int. 125 169
[2] Zhao Y P 2012 The physical mechanics of surface and interface (Beijing:Science Press) pp. 127-153
[3] Müser M H, Dapp W B, Bugnicourt R, Sainsot P, Lesaffre N et al. 2017 Tribol. Lett. 65 118
[4] Feeny B, Guran A, Hinrichs N and Popp K 1998 Appl. Mech. Rev 51 321
[5] Rubinstein S M, Cohen G and Fineberg J 2004 Nature 430 1005
[6] Rubinstein S M, Cohen G and Fineberg J 2009 J. Phys. D:Appl. Phys. 42 214016
[7] Yamaguchi T, Sawae Y and Rubinstein S M 2016 Extreme. Mech. Lett. 9 331
[8] Lahini Y, Gottesman O, Amir A and Rubinstein S M 2017 Phys. Rev. Lett. 118 085501
[9] Dillavou S and Rubinstein S M 2018 Phys. Rev. Lett. 120 224101
[10] Rubinstein S M, Cohen G and Fineberg J 2006 Phys. Rev. Lett. 96 256103
[11] Kousaka T, Asahara H and Inaba N 2018 Prog. Theor. Exp. Phys. 2018 3
[12] Maegawa S, Itoigawa F and Nakamura T 2016 Tribol. Int. 93 182
[13] Thomsen J J and Fidlin A 2003 Int. J. Nonlin. Mech. 38 389
[14] Xiang W, Yan S and Wu J 2019 Nonlinear Dynam. 95 321
[15] Veraszto Z and Stepan G 2017 Int. J. Nonlin. Mech. 94 380
[16] Marques F, Flores P, Claro J C P and Lankarani H M 2016 Nonlinear Dynam. 86 1407
[17] Li Q, Chen Y and Qin Z 2011 Chin. Phys. Lett. 28 030502
[18] Bowden F P and Leben L 1939 Proc. R. Soc. A 169 371
[19] Hao X, Pan D, Zhang Z, Wang S, Gao Y et al. 2020 Chin. Phys. B 29 046802
[20] Guo Y, Liu A, Wang J and Liu S 2019 Chin. Phys. B 28 094212
[21] Wang K and Jiang N 2021 Chin. Phys. B 30 034703
[22] Guo W, Du L, Liu Z, Yang H and Mei D 2017 Chin. Phys. B 26 010502
[23] Hao G, Li Y, Wang X, Wang W, Wang X et al. 2020 Chin. Phys. Lett. 37 036102
[24] Chen J, Ge Y and Zhang H 2012 Chin. Phys. Lett. 29 010701
[25] Peng Y T, Zeng X Z, Yu K and Lang H J 2020 Carbon 163 186
[26] Mate C M, McClelland G M, Erlandsson R and Chiang S 1987 Phys. Rev. Lett. 59 1942
[27] Rabinowicz E and Tanner R I 1966 J. Appl. Mech. 33 479
[28] Rabinowicz E 1956 Sci. Am. 194 109
[29] Song B, Yan S and Xiang W 2015 Chin. Phys. B 24 014601
[30] Tonazzi D, Massi F, Baillet L, Brunetti J and Berthier Y 2018 Mech. Syst. Signal. Process. 110 110
[31] Tonazzi D, Massi F, Baillet L, Culla A, Bartolomeo M D et al. 2015 Meccanica 50 649
[32] Luo Z, Song B, Han J and Yan S 2019 Chin. Phys. B 28 104601
[33] Luo Z, Song B, Han J and Yan S 2019 Chin. Phys. B 28 054601
[34] Or Y and Rimon E 2012 Nonlinear Dynam. 67 1647
[35] Maegawa S, Suzuki A and Nakano K 2010 Tribol. Lett. 38 313
[36] Capozza R and Urbakh M 2012 Phys. Rev. B 86 085430
[37] Capozza R, Rubinstein S M, Barel I, Urbakh M and Fineberg J 2011 Phys. Rev. Lett. 107 024301
[38] Ozaki S, Mieda K, Matsuura T and Maegawa S 2018 Lubricants 6 38
[39] Adams G G 1998 J. Appl. Mech-T. ASME 65 470
[40] Maegawa S, Itoigawa F and Nakamura T 2015 J. Adv. Mech. Des. Syst. Manufact. 9 JAMDSM0069
[41] Maegawa S, Itoigawa F and Nakamura T 2016 Tribol. Lett. 62 1
[42] Weber B, Suhina T, Junge T, Pastewka L, Brouwer A M et al. 2018 Nat. Commun. 9 888
[43] Du Z, Fang H, Zhan X and Xu J 2018 Mech. Syst. Signal Pr. 105 261
[44] Tian P, Tao D, Yin W, Zhang X, Meng Y et al. 2016 Sci. Rep. 6 33730
[45] Klaumünzer D, Maaß R and Löffler J F 2011 J. Mater. Res. 26 1453
[46] Han J, Luo Z, Zhang Y and Yan S 2020 Chin. Phys. B 30 054601
[47] Raffa M L, Lebon F and Vairo G 2016 Int. J. Solids Struct. 87 245
[48] Medina S, Nowell D and Dini D 2013 Tribol. Lett. 49 103
[1] Evolution of real contact area during stick-slip movement observed by total reflection method
Zhijun Luo(罗治军), Baojiang Song(宋保江), Jingyu Han(韩靖宇), Shaoze Yan(阎绍泽). Chin. Phys. B, 2019, 28(10): 104601.
[2] Uphill anomalous transport in a deterministic system with speed-dependent friction coefficient
Wei Guo(郭伟), Lu-Chun Du(杜鲁春), Zhen-Zhen Liu(刘真真), Hai Yang(杨海), Dong-Cheng Mei(梅冬成). Chin. Phys. B, 2017, 26(1): 010502.
[3] Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction
Zhi-Xin Li(李志新), Qing-Jie Cao(曹庆杰), Léger Alain. Chin. Phys. B, 2016, 25(1): 010502.
[4] Measurement of the friction coefficient of a fluctuating contact line using an AFM-based dual-mode mechanical resonator
Guo Shuo (郭硕), Xiong Xiao-Min (熊小敏), Xu Zu-Li (徐祖力), Shen Ping (沈平), Tong Penger (童彭尔). Chin. Phys. B, 2014, 23(11): 116802.
[5] Effects of ramp vibrational states on flexural intrinsic vibrations in Besocke-style scanners
Zhang Hui (张辉), Jiang Guo-Zhu (蒋国珠), Liu Zhao-Qun (刘朝群), Zhang Shu-Yi (张淑仪), Fan Li (范理). Chin. Phys. B, 2013, 22(6): 068103.
[6] Finite element analysis of stress and strain distributions in InAs/GaAs quantum dots
Zhou Wang-Min (周旺民), Wang Chong-Yu (王崇愚), Chen Yong-Hai (陈涌海), Wang Zhan-Guo (王占国). Chin. Phys. B, 2006, 15(6): 1315-1319.
[7] Gas flow characteristics in straight silicon microchannels
Ding Ying-Tao (丁英涛), Yao Zhao-Hui (姚朝晖), Shen Meng-Yu (沈孟育). Chin. Phys. B, 2002, 11(9): 869-875.
No Suggested Reading articles found!