Abstract Studying the evolution of interface contact state, revealing the "black box" behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accuracy of mechanical system performance. Based on the principle of total reflection, a visual analysis technology of interface contact behavior is proposed. Considering the dynamic variation of stress distribution in interface contact, we analyze the nonlinear characteristics of contact parameters in different stages of stick-slip process using the above-mentioned experimental technology. Then, we find that the tangential stiffness of the interface is not a fixed value during the stick-slip process and the stress distribution variation is one of the important factors affecting the tangential stiffness of interface. Based on the previous experimental results, we present an improved stick-slip friction model, considering the change of tangential stiffness and friction coefficient caused by the stress distribution variation. This improved model can characterize the variation characteristics of contact parameters in different stages of stick-slip process, whose simulation results are in good agreement with the experimental data. This research may be valuable for improving the prediction accuracy of mechanical system performance.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11872033) and the Beijing Natural Science Foundation, China (Grant No. 3172017).
Corresponding Authors:
Shaoze Yan
E-mail: yansz@mail.tsinghua.edu.cn
Cite this article:
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽) Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface 2022 Chin. Phys. B 31 034601
[1] Vakis A I, Yastrebov V A, Scheibert J, Nicola L, Dini D et al. 2018 Tribol. Int.125 169 [2] Zhao Y P 2012 The physical mechanics of surface and interface (Beijing:Science Press) pp. 127-153 [3] Müser M H, Dapp W B, Bugnicourt R, Sainsot P, Lesaffre N et al. 2017 Tribol. Lett.65 118 [4] Feeny B, Guran A, Hinrichs N and Popp K 1998 Appl. Mech. Rev51 321 [5] Rubinstein S M, Cohen G and Fineberg J 2004 Nature430 1005 [6] Rubinstein S M, Cohen G and Fineberg J 2009 J. Phys. D:Appl. Phys.42 214016 [7] Yamaguchi T, Sawae Y and Rubinstein S M 2016 Extreme. Mech. Lett.9 331 [8] Lahini Y, Gottesman O, Amir A and Rubinstein S M 2017 Phys. Rev. Lett.118 085501 [9] Dillavou S and Rubinstein S M 2018 Phys. Rev. Lett.120 224101 [10] Rubinstein S M, Cohen G and Fineberg J 2006 Phys. Rev. Lett.96 256103 [11] Kousaka T, Asahara H and Inaba N 2018 Prog. Theor. Exp. Phys.2018 3 [12] Maegawa S, Itoigawa F and Nakamura T 2016 Tribol. Int.93 182 [13] Thomsen J J and Fidlin A 2003 Int. J. Nonlin. Mech.38 389 [14] Xiang W, Yan S and Wu J 2019 Nonlinear Dynam.95 321 [15] Veraszto Z and Stepan G 2017 Int. J. Nonlin. Mech.94 380 [16] Marques F, Flores P, Claro J C P and Lankarani H M 2016 Nonlinear Dynam.86 1407 [17] Li Q, Chen Y and Qin Z 2011 Chin. Phys. Lett.28 030502 [18] Bowden F P and Leben L 1939 Proc. R. Soc. A169 371 [19] Hao X, Pan D, Zhang Z, Wang S, Gao Y et al. 2020 Chin. Phys. B29 046802 [20] Guo Y, Liu A, Wang J and Liu S 2019 Chin. Phys. B28 094212 [21] Wang K and Jiang N 2021 Chin. Phys. B30 034703 [22] Guo W, Du L, Liu Z, Yang H and Mei D 2017 Chin. Phys. B26 010502 [23] Hao G, Li Y, Wang X, Wang W, Wang X et al. 2020 Chin. Phys. Lett.37 036102 [24] Chen J, Ge Y and Zhang H 2012 Chin. Phys. Lett.29 010701 [25] Peng Y T, Zeng X Z, Yu K and Lang H J 2020 Carbon163 186 [26] Mate C M, McClelland G M, Erlandsson R and Chiang S 1987 Phys. Rev. Lett.59 1942 [27] Rabinowicz E and Tanner R I 1966 J. Appl. Mech.33 479 [28] Rabinowicz E 1956 Sci. Am.194 109 [29] Song B, Yan S and Xiang W 2015 Chin. Phys. B24 014601 [30] Tonazzi D, Massi F, Baillet L, Brunetti J and Berthier Y 2018 Mech. Syst. Signal. Process.110 110 [31] Tonazzi D, Massi F, Baillet L, Culla A, Bartolomeo M D et al. 2015 Meccanica50 649 [32] Luo Z, Song B, Han J and Yan S 2019 Chin. Phys. B28 104601 [33] Luo Z, Song B, Han J and Yan S 2019 Chin. Phys. B28 054601 [34] Or Y and Rimon E 2012 Nonlinear Dynam.67 1647 [35] Maegawa S, Suzuki A and Nakano K 2010 Tribol. Lett.38 313 [36] Capozza R and Urbakh M 2012 Phys. Rev. B86 085430 [37] Capozza R, Rubinstein S M, Barel I, Urbakh M and Fineberg J 2011 Phys. Rev. Lett.107 024301 [38] Ozaki S, Mieda K, Matsuura T and Maegawa S 2018 Lubricants6 38 [39] Adams G G 1998 J. Appl. Mech-T. ASME65 470 [40] Maegawa S, Itoigawa F and Nakamura T 2015 J. Adv. Mech. Des. Syst. Manufact.9 JAMDSM0069 [41] Maegawa S, Itoigawa F and Nakamura T 2016 Tribol. Lett.62 1 [42] Weber B, Suhina T, Junge T, Pastewka L, Brouwer A M et al. 2018 Nat. Commun.9 888 [43] Du Z, Fang H, Zhan X and Xu J 2018 Mech. Syst. Signal Pr.105 261 [44] Tian P, Tao D, Yin W, Zhang X, Meng Y et al. 2016 Sci. Rep.6 33730 [45] Klaumünzer D, Maaß R and Löffler J F 2011 J. Mater. Res.26 1453 [46] Han J, Luo Z, Zhang Y and Yan S 2020 Chin. Phys. B30 054601 [47] Raffa M L, Lebon F and Vairo G 2016 Int. J. Solids Struct.87 245 [48] Medina S, Nowell D and Dini D 2013 Tribol. Lett.49 103
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.