Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117701    DOI: 10.1088/1674-1056/ac078e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films

Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩)§
College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
Abstract  High-quality Fe-doped TiO2 films are epitaxially grown on MgF2 substrates by pulsed laser deposition. The x-ray diffraction and Raman spectra prove that they are of pure rutile phase. High-resolution transmission electron microscopy (TEM) further demonstrates that the epitaxial relationship between rutile-phased TiO2 and MgF2 substrates is 110 TiO22. The room temperature ferromagnetism is detected by alternative gradient magnetometer. By increasing the ambient oxygen pressure, magnetization shows that it decreases monotonically while absorption edge shows a red shift. The transport property measurement demonstrates a strong correlation between magnetization and carrier concentration. The influence of ambient oxygen pressure on magnetization can be well explained by a modified bound magnetization polarization model.
Keywords:  ferromagnetic materials      semiconductors      epitaxial films      rutile TiO2  
Received:  20 February 2021      Revised:  24 March 2021      Accepted manuscript online:  03 June 2021
PACS:  77.80.Dj (Domain structure; hysteresis)  
  78.40.Fy (Semiconductors)  
  77.55.Px (Epitaxial and superlattice films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504192) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR201910230017 and BSB2014010).
Corresponding Authors:  Qiang Li, Qing-Hao Li     E-mail:  liqiang@qdu.edu.cn;qhli@qdu.edu.cn

Cite this article: 

Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩) Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films 2021 Chin. Phys. B 30 117701

[1] Dietl T 2010 Nat. Mater. 9 965
[2] Prellier W, Fouchet A and Mercey B 2003 J. Phys.: Condes. Matter. 15 R1583
[3] Ando K 2006 Science 312 1883
[4] Li Q, Qiao R, Mehta A, Lü W, Zhou T, Arenholz E, Wang C, Chen Y, Li L, Tian Y, Bai L, Hussain Z, Zheng R, Yang W and Yan S 2020 Sci. Bull. 65 1718
[5] Zhang F, Zheng B, Sebastian A, Olson D H, Liu M, Fujisawa K, Pham Y T H, Jimenez V O, Kalappattil V, Miao L, Zhang T, Pendurthi R, Lei Y, Elías A L, Wang Y, Alem N, Hopkins P E, Das S, Crespi V H, Phan M H and Terrones M 2020 Adv. Sci. 7 2001174
[6] Phan V N and Nguyen H N 2020 Phys. Rev. B 102 125202
[7] Cai Y X, Zhang Y D, Dang B S, Wu H, Wang J F and Yuan P 2011 Acta Phys. Sin. 60 040701 (in Chinese)
[8] Paul S, Dalal B, Das M, Mandal P and De S K 2019 Chem. Mater. 31 8191
[9] Li Q, Shen T T, Dai Z K, Cao Y L, Yan S S, Kang S S, Dai Y Y, Chen Y X, Liu G L and Mei L M 2012 Appl. Phys. Lett. 101 172405
[10] Li X L and Xu X H 2019 Chin. Phys. B 28 098506
[11] Wei Z M and Xia J B. 2019 Acta Phys. Sin. 68 163201 (in Chinese)
[12] Jean-Baptiste M 2013 J. Phys. D: Appl. Phys. 46 143001
[13] Zhang K, Cao Y L, Fang Y W, Li Q, Zhang J, Duan C G, Yan S S, Tian Y F, Huang R, Zheng R K, Kang S S, Chen Y X, Liu G L and Mei L M 2015 Nanoscale 7 6334
[14] Song C, Cui B, Li F, Zhou X and Pan F 2017 Prog. Mater. Sci. 87 33
[15] Pham Y T H, Liu M, Jimenez V O, Yu Z, Kalappattil V, Zhang F, Wang K, Williams T, Terrones M and Phan M H 2020 Adv. Mater. 32 2003607
[16] You J Y, Gu B, Maekawa S and Su G 2020 Phys. Rev. B 102 094432
[17] Luo X, Zhang F, Li Q, Xia Q, Li Z, Li X, Ye W, Li S and Ge C 2020 J. Phys.: Condes. Matter. 32 334001
[18] Guo S L and Ning F L 2018 Chin. Phys. B 27 097502
[19] Long L, Yi P G, Chao Z H, Tao H L, Huang J T, Yu W Y, Chen R X, Lou M S and Yan L B 2020 Chin. Phys. B 29 097102
[20] He M, Tian Y F, Springer D, Putra I A, Xing G Z, Chia E E M, Cheong S A and Wu T 2011 Appl. Phys. Lett. 99 222511
[21] Hsu H S, Huang J C A, Huang Y H, Liao Y F, Lin M Z, Lee C H, Lee J F, Chen S F, Lai L Y and Liu C P 2006 Appl. Phys. Lett. 88 242507
[22] Kim H, Osofsky M, Miller M M, Qadri S B, Auyeung R C Y and Piqué A 2012 Appl. Phys. Lett. 100 032404
[23] Liu G L, Cao Q, Deng J X, Xing P F, Tian Y F, Chen Y X, Yan S S and Mei L M 2007 Appl. Phys. Lett. 90 052504
[24] Tian Y, Li Y, He M, Putra I A, Peng H, Yao B, Cheong S A and Wu T 2011 Appl. Phys. Lett. 98 162503
[25] Xing P F, Chen Y X, Yan S S, Liu G L, Mei L M, Wang K, Han X D and Zhang Z 2008 Appl. Phys. Lett. 92 022513
[26] de Godoy M P F, Mesquita A, Avansi W, Neves P P, Chitta V A, Ferraz W B, Boselli M A, Sabioni A C S and de Carvalho H B 2013 J. Alloys Compd. 555 315
[27] Kaushik A, Dalela B, Kumar S, Alvi P A and Dalela S 2013 J. Alloys Compd. 552 274
[28] Philip J, Punnoose A, Kim B I, Reddy K M, Layne S, Holmes J O, Satpati B, LeClair P R, Santos T S and Moodera J S 2006 Nat. Mater. 5 298
[29] Zhou T, Wei L, Xie Y, Li Q, Hu G, Chen Y, Yan S, Liu G, Mei L and Jiao J 2012 Nanoscale Res. Lett. 7 1
[30] Zhu D, Liu G, Xiao S, Yan S, He S, Cai L, Li Q, Cao Q, Hu S, Chen Y, Kang S and Mei L 2013 J. Appl. Phys. 113 173701
[31] Han R L and Yan Y 2018 Chin. Phys. B 27 117505
[32] Xiao L L and Xiao H X. 2019 Chin. Phys B 28 098506
[33] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[34] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S Y and Koinuma H 2001 Science 291 854
[35] Yamada Y, Ueno K, Fukumura T, Yuan H T, Shimotani H, Iwasa Y, Gu L, Tsukimoto S, Ikuhara Y and Kawasaki M 2011 Science 332 1065
[36] Li Q, Wei L, Xie Y, Jiang F, Zhou T, Hu G, Jiao J, Chen Y, Liu G, Yan S and Mei L 2013 J. Alloys Compd. 574 67
[37] Xu N N, Li G P, Lin Q L, Liu H and Bao L M 2016 Chin. Phys. B 25 116103
[38] Lee Y J, Jong M P D, Wiel W G V D, Kim Y and Brock J D 2010 Appl. Phys. Lett. 97 212506
[39] Singhal R K, Samariya A, Kumar S, Xing Y T, Jain D C, Dolia S N, Deshpande U P, Shripathi T and Saitovitch E B 2010 J. Appl. Phys. 107 113916
[40] Zhang Y, Qi Y Y, Hu Y H and Liang P 2013 Chin. Phys. B 22 127101
[41] Nguyen H H, Prellier W, Sakai J and Ruyter A 2004 J. Appl. Phys. 95
[42] Schuisky M, HRsta A, Aidla A, Kukli K, Kiisler A A and Aarik J 2000 J. Electrochem. Soc. 147 3319
[43] Chen M C and Jiang A Q. 2011 Chin. Phys. Lett. 28 077701
[44] Xie Y, Wei L, Li Q, Chen Y, Yan S, Jiao J, Liu G and Mei L 2016 J. Alloys Compd. 683 439
[45] Aita C R 2007 Appl. Phys. Lett. 90 213112
[46] Chen C A, Huang Y S, Chung W H, Tsai D S and Tiong K K 2009 J. Mater. Sci.: Mater. Electron. 20 303
[47] Yang J Y, Ma H L, Ma G H, Lu B and Ma H 2007 Appl. Phys. A 88 801
[48] Gupta R K, Ghosh K and Kahol P K 2010 Mater. Lett. 64 2022
[49] Shinde V R, Gujar T P, Lokhande C D, Mane R S and Han S H 2006 Mater. Chem. Phys. 96 326
[50] Singh J, Sharma S, Sharma S and Singh R C 2019 Optik 182 538
[51] Mayabadi A H, Waman V S, Kamble M M, Ghosh S S, Gabhale B B, Rondiya S R, Rokade A V, Khadtare S S, Sathe V G, Pathan H M, Gosavi S W and Jadkar S R 2014 J. Phys. Chem. Solids 75 182
[52] Tantray F A, Agrawal A, Gupta M, Andrews J T and Sen P 2016 Thin Solid Films 619 86
[53] Horprathum M, Eiamchai P, Chindaudom P, Pokaipisit A and Limsuwan P 2012 Procedia Engineering 32 676
[54] Kaminski A and Das Sarma S 2002 Phys. Rev. Lett. 88 247202
[55] Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173
[56] Deepika, Kumar R, Kumar R, Yadav K P, Vaibhav P, Sharma S, Singh R K and Kumar S 2020 Chin. Phys. B 29 108503
[57] Chou H, Lin C P, Huang J C A and Hsu H S 2008 Phys. Rev. B 77 245210
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[3] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[4] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[5] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[6] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[7] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[8] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[9] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[10] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[11] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[12] First-principles study of the band gap tuning and doping control in CdSexTe1-x alloy for high efficiency solar cell
Jingxiu Yang(杨竞秀), Su-Huai Wei(魏苏淮). Chin. Phys. B, 2019, 28(8): 086106.
[13] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[14] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[15] 420 nm thick CH3NH3PbI3-xBrx capping layers for efficient TiO2 nanorod array perovskite solar cells
Long Li(李龙), Cheng-Wu Shi(史成武), Xin-Lian Deng(邓新莲), Yan-Qing Wang(王艳青), Guan-Nan Xiao(肖冠南), Ling-Ling Ni(倪玲玲). Chin. Phys. B, 2018, 27(1): 018804.
No Suggested Reading articles found!