Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117802    DOI: 10.1088/1674-1056/abf4ba
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux

Fatemeh Abdi
Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
Abstract  Zn nano rods were produced on glass substrates using oblique angle deposition method at different deposition angles. For oxidation, the samples were placed in a furnace under oxygen flux. AFM and FESEM images were used to morphology analysis of the structures. The results showed that with increasing the angle of deposition, the grain size decreases and the porosity of the structures increases. XRD pattern and XPS depth profile analysis were used to crystallography and oxide thickness investigations, respectively. The XRD results confirmed oxide phase formation, and the XPS results analyzed the oxide layer thickness. The result showed that as the deposition angle of the nanorods increases, the thickness of the oxide layer increases. The reason for the increase in the thickness of the oxide layer with increasing deposition angle was investigated and attributed to the increase in the porosity of the thin films. The optical spectra of the structures for p polarized light at 10° incident light angle were obtained using single beam spectrophotometer in the 300 nm to 1000 nm wavelengths. The results showed that the formed structures although annealed in oxygen flux, tend to behave like metal. To calculate the optical constant of the structures, the reverse homogenization theory was used and the void fraction and complex refractive index of the structures were obtained. Finally, by calculating permittivity and optical conductivity of the structures, their changes with the deposition angle were investigated.
Keywords:  nano rod      optical spectra      refractive index      reverses homogenization  
Received:  28 January 2021      Revised:  27 March 2021      Accepted manuscript online:  05 April 2021
PACS:  78.67.Qa (Nanorods)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  74.25.Gz (Optical properties)  
Fund: Project supported by the University of Mohaghegh Ardabili.
Corresponding Authors:  Fatemeh Abdi     E-mail:  F.Abdi@uma.ac.ir

Cite this article: 

Fatemeh Abdi On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux 2021 Chin. Phys. B 30 117802

[1] Abdi F, Siabi A and Savaloni H 2012 J. Theor. Appl. Phys. 6 4
[2] Abdi F, Siabi A and Savaloni H 2012 J. Theor. Appl. Phys. 6 11
[3] Abdi F and Savaloni H 2016 Opt. Commun. 380 69
[4] Abdi F and Savaloni H 2015 Appl. Surf. Sci. 330 74
[5] Hsu S H, Liu E S and Chang Y C 2008 Phys. Status Solidi A 205 876
[6] Beydaghyan G, Buzea C, Cui Y, Elliott C and Robbie K 2005 Appl. Phys. Lett. 87 153103
[7] Schmidt D, Booso B, Hofmann T, Schubert E, Sarangan A and Schubert M 2009 Appl. Phys. Lett. 94 011914
[8] Savaloni H and Esfandiar A 2010 Opt. Commun. 283 2849
[9] Babaei F and Savaloni H 2017 Plasmonics 13 1
[10] Savaloni H and Heidarinasab F 2011 Appl. Surf. Sci. 257 9044
[11] Savaloni H and Fakharpour M 2017 J. Theor. Appl. Phys. 11 117
[12] Savaloni H and Esfandiar A 2011 Appl. Surf. Sci. 257 9425
[13] Kabashin A V, Evans P and Pastkovsky S 2009 Nat. Mater. 8 867
[14] Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2427
[15] Dekker C 1999 Phys. Today 52 22
[16] Hu J, Odom T W and Lieber C M 1999 Acc. Chem. Res. 32 435
[17] Cui Y and Lieber C M 2001 Science 291 851
[18] Chang C S, Chattopadhyay S, Chen L C, Chen K H, Chen C W, Chen Y F, Collazo R and Sitar Z 2003 Phys. Rev. B 68 125322
[19] Wang Q H, Corrigan T D, Dai J Y, Chang R P H and Krauss A R 1997 Appl. Phys. Lett. 70 3308
[20] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
[21] Poborchii V, Tada T, Kanayama T and Moroz A 2003 Appl. Phys. Lett. 82 508
[22] Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y and Yang P 2003 Nano Lett. 3 1229
[23] Wong E W, Sheehan P E and C M Lieber 1997 Science 277 1971
[24] Braiman Y, Barhen J and Protopopescu V 2003 Phys. Rev. Lett. 90 94301
[25] Otiti T, Niklasson G A, Svedlindh P and Granquist C G 1997 Thin Solid Films 307 245
[26] Otiti T 2001 J. Mater. Sci. Lett. 20 845
[27] Barranco A, Borras A, Elipe A R G and Palmero A 2016 Prog. Mater. Sci. 76 59
[28] Kharea C, Patzig C, Gerlach J W and Rauschenbach B 2010 J. Vac. Sci. Technol. A 28 1002
[29] Singh1 P D and Singh J P 2014 Appl. Phys. A 114 1189
[30] Abbasian S, Moshaii A, Sobhkhiz V N and Nikkhah M 2017 Plasmonics 12 631
[31] Benson M, Shah P, Marciniak M, Sarangan A and Urbas A 2014 J. Nanomater. 2014 1
[32] Dhruv P and Singh J 2013 Appl. Phys. A 114 4
[33] Lau W F, Bai F and Huang Z 2013 Nanotechnology 24 465707
[34] Shah P, Dongquan J, Xiaoxu N and Andrew M 2013 J. Sensors 2013 1
[35] Li B, Wang T, Su Q, Wu X and Dong P 2019 Sensors 19 3742
[36] Vitrey A, Alvarez R, Palmero A, González M U and García J M 2017 J. Nanotechnol. 8 434
[37] Lyvers D P, Moon J M, Kildishev A V, Shalaev V M and Wei A 2008 ACS Nano. 2 2569
[38] Stagon P S and Huang H 2014 Nanoscale Res. Lett. 9 400
[39] Abdulrahman R B 2015 J. Vac. Sci. Technol. A 33 41501
[40] Santosa R J, Chuvilinb A, Modind E, Rodriguesa S P, Carvalhoa S and Vieira M T 2018 Surf. Coat. Technol. 347 350
[41] Wang P I, Parker T C, Karabacak T, Wang G C and Lu T M 2009 Nanotechnology 20 85605
[42] Hua W H, Jian S Y, Chu W and Blum Y 2008 Chin. Phys. Lett. 25 234
[43] Martin K, Shigeng S, Guoke W, Graham D, Yu C and Frank P 2014 J. Phys. Chem. C 118 4878
[44] He Y and Zhao Y 2010 Cryst. Growth. Des. 10 440
[45] Schmidt D, Booso B, Hofmann T, Schubert E, Sarangan A and Schubert M 2009 Appl. Phys. Lett. 94 011914
[46] Broughton J N and Brett M J 2002 Electrochem. Solid ST 5 A279
[47] Alrashid E and Ye D 2014 J. Appl. Phys. 116 043501
[48] Ye D X 2002 Nanotechnology 13 615
[49] Enright M J, Sarsito H and Cossairt B M 2018 Mater. Chem. Front. 2 1296
[50] Zhao Y, Ye D, Wang G C and Lu T M 2003 Nanotubes and Nanowires 5219
[51] Khare C, Fuhrmann B, Leipner H S, Bauer J and Rauschenbach B 2011 J. Vac. Sci. Technol. A 29 51501
[52] García L G 2012 Nanotechnology 23 205701
[53] Ghoshal T and Kar S 2007 Appl. Surf. Sci. 253 7578
[54] Oros C, Wisitsoraat A and Horprathum M 2016 Key Eng. Mat. 675-676 163
[55] Hrudey P C P, Taschuk M, Tsui Y Y, Fedosejevs R and Brett M J 2005 J. Vac. Sci. Technol. A 23 856
[56] Lu X, Kim S and Seo J S 2017 J. Nanomat. 2017 1
[57] Yildiz A, Cansizoglu H, Turkoz M, Abdulrahman R, Al-Hilo A, Cansizoglu M, Demirkan M and Karabacak T 2015 Thin Solid Films. 589
[58] Joshua M, Michael T and Michael J 2016 Thin Solid Films 519 3530
[59] Yang Z P, Xie Z H, Lin C C and Lee Y J 2015 Opt. Mater. Express 5 399
[60] Joshua M, Forgea L, Michael T, Taschuka M and Brett J 2011 Thin Solid Films 519 3530
[61] Yi G C, Wang C and Park W 2005 Semicond. Sci. Technol 20 22
[62] Teki R, Parker T, Li H, Koratkar N, Lu T M and Lee S 2008 Thin Solid Films 516 4993
[63] Chu J, Peng X, Sajjad M, Yang B and Feng P X 2012 Thin Solid Films 520 3493
[64] Lakhtakia A and Messier R 2005 Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, Bellingham, WA) p. 1253
[65] Poxson D J, Mont F W, Schubert M F, Kim J K and Schubert E F 2008 Appl. Phys. Lett. 93 101914
[66] Farid B, Engel G E, Daling R and Haeringen W 1994 Phil. Mag. B 69 901
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[5] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[6] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[7] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[8] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[9] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[10] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[11] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[12] A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2019, 28(4): 044201.
[13] Analysis of optical properties of bio-smoke materials in the 0.25-14 μm band
Xinying Zhao(赵欣颖), Yihua Hu(胡以华), Youlin Gu(顾有林), Xi Chen(陈曦), Xinyu Wang(王新宇), Peng Wang(王鹏), Xiao Dong(董骁). Chin. Phys. B, 2019, 28(3): 034201.
[14] Damage and recovery of fiber Bragg grating under radiation environment
Shi-Zhe Wen(温世喆), Wei-Chen Xiong(熊伟晨), Li-Ping Huang(黄力平), Zhen-Rui Wang(王镇锐), Xing-Bin Zhang(张兴斌), Zhen-Hui He(何振辉). Chin. Phys. B, 2018, 27(9): 090701.
[15] High-performance lens antenna using high refractive index metamaterials
Lai-Jun Wang(王来军), Qiao-Hong Chen(陈巧红), Fa-Long Yu(余发龙), Xi Gao(高喜). Chin. Phys. B, 2018, 27(8): 087802.
No Suggested Reading articles found!