Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097601    DOI: 10.1088/1674-1056/ac0cd9
Special Issue: SPECIAL TOPIC — Two-dimensional magnetic materials and devices
SPECIAL TOPIC—Two-dimensional magnetic materials and devices Prev   Next  

Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures

Danliang Zhang(张丹亮)1,†, Chen Yi(易琛)2,†, Cuihuan Ge(葛翠环)1, Weining Shu(舒维宁)1, Bo Li(黎博)1, Xidong Duan(段曦东)3, Anlian Pan(潘安练)2,‡, and Xiao Wang(王笑)1,§
1 School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
3 Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Abstract  Two-dimensional (2D) magnetic materials have aroused tremendous interest due to the 2D confinement of magnetism and potential applications in spintronic and valleytronic devices. However, most of the currently 2D magnetic materials are achieved by the exfoliation from their bulks, of which the thickness and domain size are difficult to control, limiting the practical device applications. Here, we demonstrate the realization of thickness-tunable rhombohedral Cr2Se3 nanosheets on different substrates via the chemical vapor deposition route. The magnetic transition temperature at about 75 K is observed. Furthermore, van der Waals heterostructures consisting of Cr2Se3 nanosheets and monolayer WS2 are constructed. We observe the magnetic proximity effect in the heterostructures, which manifests the manipulation of the valley polarization in monolayer WS2. Our work contributes to the vapor growth and applications of 2D magnetic materials.
Keywords:  Cr2Se3      magnetic proximity effect      heterostructures  
Received:  13 April 2021      Revised:  28 May 2021      Accepted manuscript online:  21 June 2021
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  42.25.Ja (Polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52022029, 91850116, 51772084, 62090035, and U19A2090), Hunan Provincial Natural Science Foundation of China (Grant Nos. 2018RS3051 and 2018WK4004), and the Key Program of the Hunan Provincial Science and Technology Department (Grant No. 2019XK2001).
Corresponding Authors:  Anlian Pan, Xiao Wang     E-mail:  anlian.pan@hnu.edu.cn;xiao_wang@hnu.edu.cn

Cite this article: 

Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑) Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures 2021 Chin. Phys. B 30 097601

[1] Burch K S, Mandrus D and Park J G 2018 Nature. 563 47
[2] Gong C, Li L, Li Z L. Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[3] Wunderlich J, Park B G, Irvine A C, Zârbo L P, Rozkotová E, Nemec P, Novák V, Sinova J and Jungwirth T 2010 Science 330 1801
[4] Zhong D, Seyler K L, Linpeng X Y, Wilson N P, Taniguchi T, Watanabe K J, McGuire M A, Fu Kai-Mei C, Xiao D, Yao W and Xu X D 2020 Nat. Nanotechnol. 15 187
[5] Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S and Chen C T 2016 Nat. Mater. 15 711
[6] Zhao C, Norden T, Zhang P Y, Zhao P Q, Cheng Y C, Sun F, Parry J P, Taheri P, Wang J Q, Yang Y H, Scrace T, Kang K F, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A and Zeng H 2017 Nat. Nanotechnol. 15 187
[7] Lyons T P, Gillard D, Molina-Sánchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T, Watanabe K, Novoselov K S, Fernández-Rossier J and Tartakovskii A I 2020 Nat. Commun. 11 6021
[8] Seyler K L, Zhong D, Huang B, Linpeng X Y, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M C and Xu X D 2018 Nano Lett. 18 3823
[9] Zhong D, Seyler K L, Linpeng X Y, Cheng R, Nikhil S, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C and Xu X D 2017 Sci. Adv. 3 e1603113
[10] Xu L X, Lu W G, Hu C, Guo Q X, Shang S, Xu X L, Yu G H, Yan Y, Wang L H and Teng J 2020 Chin. Phys. B 29 077304
[11] Yin S Q, Zhao L, Song C, Huang Y, Gu Y D, Chen R Y, Zhu W X, Sun Y M, Jiang W J, Zhang X Z and Pan F 2021 Chin. Phys. B 30 027505
[12] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W. Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature 563 94
[13] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[14] Huang B, Clark G, Klein D R, Macneill D, Navarromoratalla E, Seyler K L, Wilson N, Mcguire M A, Cobden D H, Xiao D, Jarillo-Herrero P and Xu X D 2018 Nat. Nanotechnol. 13 544
[15] Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y and Xiu F X 2017 npj 2D Mater. Appl. 1 30
[16] Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L and Zhai T Y 2019 Adv. Funct. Mater. 29 1805880
[17] Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R and He J 2019 Nano Lett. 19 2154
[18] Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J and Zhang Y F 2019 Adv. Mater. 32 1905896
[19] Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X and He J 2019 Adv. Mater. 31 1900056
[20] Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W and He J 2020 Nano Lett. 20 3130
[21] Huang Y, Xu K, Wang Z X, Shifa T A, Wang Q S, Wang F, Jiang C and He J 2015 Nanoscale 7 17375
[22] Ahn J H, Lee M J, Heo H, Sung J H, Kim K, Hwang H, and Jo M H 2015 Nano Lett. 15 3703
[23] Mutlu Z, Wu R J, Wickramaratne D, Shahrezaei S, Liu C, Temiz S, Patalano A, Ozkan M, Lake R K, Mkhoyan K. A and Ozkan C S 2016 Small 12 2998
[24] Wu J, Zhang C L, Yan J M, Chen L, Guo L, Chen T W, Gao G Y, Fei L F, Zhao W Y, Chai Y and Zheng R K 2020 J. Phys.: Condens. Matter 32 475801
[25] Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S and Zhou X 2018 Nat. Commun. 9 979
[26] Chen Y, Jiang Y, Yi C, Liu H W, Chen S L, Sun X X, Ma C, Li D, He C L, Luo Z Y, Jiang F, Zheng W H, Zheng B Y, Xu B Y, Xu Z Y and Pan A L 2021 Sci. China Mater. 64 1449
[27] Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S and Zhang Y F 2017 Adv. Mater. 29 1702359
[28] Zhang D L, Zeng Z X S, Tong Q J, Jiang Y, Chen S L, Zheng B Y, Qu J Y, Li F, Zheng W H, Jiang F, Zhao H P, Huang L Y, Braun K, Meixner A J, Wang X and Pan A L 2020 Adv. Mater. 32 1908061
[29] Zhang D L, Liu Y, He M, Zhang A, Chen S L, Tong Q J, Huang L Y, Zhou Z Y, Zheng W H, Chen M X, Braun K, Meixner A J, Wang X and Pan A L 2020 Nat. Commun. 11 4442
[30] Adachi Y, Ohashi, M, Kaneko T, Yuzuri M, Yamaguchi Y, Funahashi S and Morii Y 1994 J. Phys. Soc. Jpn. 63 1548
[31] Zhang Y, Yin L, Chu J W, Shifa T A, Xia J, Wang F, Wen Y, Zhan X Y, Wang Z X and He J 2018 Adv. Mater. 30 1803665
[32] Zhang T T, Su X L, Yan Y G, Liu W, Hu T Z, Zhang C, Zhang Z K and Tang X F 2018 ACS Appl. Mater. Interfaces. 10 22389
[33] Chen J Y, Li X X, Zhou W Z, Yang J L, Ouyang F P and Xiong X 2019 Adv. Electron. Mater. 6 1900490
[34] Gong S H, Alpeggiani F, Sciacca B, Garnett E C and Kuipers L 2018 Science 359 443
[35] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[1] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[2] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[3] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[4] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[5] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[6] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[7] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[8] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[9] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[10] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[11] Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations
Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2021, 30(1): 017101.
[12] Effect of graphene grain boundaries on MoS2/graphene heterostructures
Yue Zhang(张悦), Xiangzhe Zhang(张祥喆), Chuyun Deng(邓楚芸), Qi Ge(葛奇), Junjie Huang(黄俊杰), Jie Lu(卢捷), Gaoxiang Lin(林高翔), Zekai Weng(翁泽锴), Xueao Zhang(张学骜), Weiwei Cai(蔡伟伟). Chin. Phys. B, 2020, 29(6): 067403.
[13] Superlubricity enabled dry transfer of non-encapsulated graphene
Zhe Ying(应哲), Aolin Deng(邓奥林), Bosai Lyu(吕博赛), Lele Wang(王乐乐), Takashi Taniguchi, Kenji Watanabe, Zhiwen Shi(史志文). Chin. Phys. B, 2019, 28(2): 028102.
[14] Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生). Chin. Phys. B, 2018, 27(9): 096101.
[15] Review of photoinduced effect in manganite films and their heterostructures
Xin-Yu Li(李欣谕), Long Zhao(赵龙), Xiang-Yang Wei(魏向洋), Hao Li(李豪), Ke-Xin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117501.
No Suggested Reading articles found!