Special Issue:
SPECIAL TOPIC — Two-dimensional magnetic materials and devices
|
SPECIAL TOPIC—Two-dimensional magnetic materials and devices |
Prev
Next
|
|
|
Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures |
Danliang Zhang(张丹亮)1,†, Chen Yi(易琛)2,†, Cuihuan Ge(葛翠环)1, Weining Shu(舒维宁)1, Bo Li(黎博)1, Xidong Duan(段曦东)3, Anlian Pan(潘安练)2,‡, and Xiao Wang(王笑)1,§ |
1 School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; 3 Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China |
|
|
Abstract Two-dimensional (2D) magnetic materials have aroused tremendous interest due to the 2D confinement of magnetism and potential applications in spintronic and valleytronic devices. However, most of the currently 2D magnetic materials are achieved by the exfoliation from their bulks, of which the thickness and domain size are difficult to control, limiting the practical device applications. Here, we demonstrate the realization of thickness-tunable rhombohedral Cr2Se3 nanosheets on different substrates via the chemical vapor deposition route. The magnetic transition temperature at about 75 K is observed. Furthermore, van der Waals heterostructures consisting of Cr2Se3 nanosheets and monolayer WS2 are constructed. We observe the magnetic proximity effect in the heterostructures, which manifests the manipulation of the valley polarization in monolayer WS2. Our work contributes to the vapor growth and applications of 2D magnetic materials.
|
Received: 13 April 2021
Revised: 28 May 2021
Accepted manuscript online: 21 June 2021
|
PACS:
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
42.25.Ja
|
(Polarization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52022029, 91850116, 51772084, 62090035, and U19A2090), Hunan Provincial Natural Science Foundation of China (Grant Nos. 2018RS3051 and 2018WK4004), and the Key Program of the Hunan Provincial Science and Technology Department (Grant No. 2019XK2001). |
Corresponding Authors:
Anlian Pan, Xiao Wang
E-mail: anlian.pan@hnu.edu.cn;xiao_wang@hnu.edu.cn
|
Cite this article:
Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑) Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures 2021 Chin. Phys. B 30 097601
|
[1] Burch K S, Mandrus D and Park J G 2018 Nature. 563 47 [2] Gong C, Li L, Li Z L. Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [3] Wunderlich J, Park B G, Irvine A C, Zârbo L P, Rozkotová E, Nemec P, Novák V, Sinova J and Jungwirth T 2010 Science 330 1801 [4] Zhong D, Seyler K L, Linpeng X Y, Wilson N P, Taniguchi T, Watanabe K J, McGuire M A, Fu Kai-Mei C, Xiao D, Yao W and Xu X D 2020 Nat. Nanotechnol. 15 187 [5] Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S and Chen C T 2016 Nat. Mater. 15 711 [6] Zhao C, Norden T, Zhang P Y, Zhao P Q, Cheng Y C, Sun F, Parry J P, Taheri P, Wang J Q, Yang Y H, Scrace T, Kang K F, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A and Zeng H 2017 Nat. Nanotechnol. 15 187 [7] Lyons T P, Gillard D, Molina-Sánchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T, Watanabe K, Novoselov K S, Fernández-Rossier J and Tartakovskii A I 2020 Nat. Commun. 11 6021 [8] Seyler K L, Zhong D, Huang B, Linpeng X Y, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M C and Xu X D 2018 Nano Lett. 18 3823 [9] Zhong D, Seyler K L, Linpeng X Y, Cheng R, Nikhil S, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C and Xu X D 2017 Sci. Adv. 3 e1603113 [10] Xu L X, Lu W G, Hu C, Guo Q X, Shang S, Xu X L, Yu G H, Yan Y, Wang L H and Teng J 2020 Chin. Phys. B 29 077304 [11] Yin S Q, Zhao L, Song C, Huang Y, Gu Y D, Chen R Y, Zhu W X, Sun Y M, Jiang W J, Zhang X Z and Pan F 2021 Chin. Phys. B 30 027505 [12] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W. Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature 563 94 [13] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [14] Huang B, Clark G, Klein D R, Macneill D, Navarromoratalla E, Seyler K L, Wilson N, Mcguire M A, Cobden D H, Xiao D, Jarillo-Herrero P and Xu X D 2018 Nat. Nanotechnol. 13 544 [15] Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y and Xiu F X 2017 npj 2D Mater. Appl. 1 30 [16] Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L and Zhai T Y 2019 Adv. Funct. Mater. 29 1805880 [17] Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R and He J 2019 Nano Lett. 19 2154 [18] Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J and Zhang Y F 2019 Adv. Mater. 32 1905896 [19] Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X and He J 2019 Adv. Mater. 31 1900056 [20] Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W and He J 2020 Nano Lett. 20 3130 [21] Huang Y, Xu K, Wang Z X, Shifa T A, Wang Q S, Wang F, Jiang C and He J 2015 Nanoscale 7 17375 [22] Ahn J H, Lee M J, Heo H, Sung J H, Kim K, Hwang H, and Jo M H 2015 Nano Lett. 15 3703 [23] Mutlu Z, Wu R J, Wickramaratne D, Shahrezaei S, Liu C, Temiz S, Patalano A, Ozkan M, Lake R K, Mkhoyan K. A and Ozkan C S 2016 Small 12 2998 [24] Wu J, Zhang C L, Yan J M, Chen L, Guo L, Chen T W, Gao G Y, Fei L F, Zhao W Y, Chai Y and Zheng R K 2020 J. Phys.: Condens. Matter 32 475801 [25] Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S and Zhou X 2018 Nat. Commun. 9 979 [26] Chen Y, Jiang Y, Yi C, Liu H W, Chen S L, Sun X X, Ma C, Li D, He C L, Luo Z Y, Jiang F, Zheng W H, Zheng B Y, Xu B Y, Xu Z Y and Pan A L 2021 Sci. China Mater. 64 1449 [27] Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S and Zhang Y F 2017 Adv. Mater. 29 1702359 [28] Zhang D L, Zeng Z X S, Tong Q J, Jiang Y, Chen S L, Zheng B Y, Qu J Y, Li F, Zheng W H, Jiang F, Zhao H P, Huang L Y, Braun K, Meixner A J, Wang X and Pan A L 2020 Adv. Mater. 32 1908061 [29] Zhang D L, Liu Y, He M, Zhang A, Chen S L, Tong Q J, Huang L Y, Zhou Z Y, Zheng W H, Chen M X, Braun K, Meixner A J, Wang X and Pan A L 2020 Nat. Commun. 11 4442 [30] Adachi Y, Ohashi, M, Kaneko T, Yuzuri M, Yamaguchi Y, Funahashi S and Morii Y 1994 J. Phys. Soc. Jpn. 63 1548 [31] Zhang Y, Yin L, Chu J W, Shifa T A, Xia J, Wang F, Wen Y, Zhan X Y, Wang Z X and He J 2018 Adv. Mater. 30 1803665 [32] Zhang T T, Su X L, Yan Y G, Liu W, Hu T Z, Zhang C, Zhang Z K and Tang X F 2018 ACS Appl. Mater. Interfaces. 10 22389 [33] Chen J Y, Li X X, Zhou W Z, Yang J L, Ouyang F P and Xiong X 2019 Adv. Electron. Mater. 6 1900490 [34] Gong S H, Alpeggiani F, Sciacca B, Garnett E C and Kuipers L 2018 Science 359 443 [35] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|