Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 044203    DOI: 10.1088/1674-1056/28/4/044203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum interferometry via a coherent state mixed with a squeezed number state

Li-Li Hou(侯丽丽)1, Yong-Xing Sui(眭永兴)1, Shuai Wang(王帅)1, Xue-Fen Xu(许雪芬)2
1 School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China;
2 Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China
Abstract  

We theoretically investigate the phase sensitivity with parity measurement on a Mach-Zehnder interferometer with a coherent state combined with a squeezed number state. Within a constraint on the total mean photon number, we find, via parity measurement, that the mixing of a coherent state and squeezed number state can give better phase sensitivity than mixing a coherent state and squeezed vacuum state when the phase shift deviates from the optimal phase φ=0. In addition, we show that the classical Fisher information for parity measurement saturates the quantum Fisher information when the phase shift approaches to zero. Thus, the quantum Cramér-Rao bound can be reached via the parity measurement in the case of φ=0.

Keywords:  quantum optics      phase sensitivity      quantum metrology  
Received:  13 December 2018      Revised:  15 January 2019      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11404040) and the Qing Lan Project of the Higher Educations of Jiangsu Province of China.

Corresponding Authors:  Shuai Wang, Xue-Fen Xu     E-mail:  ruifeng.wshslxy@jsut.edu.cn;xuxf@wxit.edu.cn

Cite this article: 

Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬) Quantum interferometry via a coherent state mixed with a squeezed number state 2019 Chin. Phys. B 28 044203

[1] Caves C M 1981 Phys. Rev. D 23 1693
[2] Pezzé L and Smerzi A 2008 Phys. Rev.Lett. 100 073601
[3] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H, and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[4] Seshadreesan K P, Anisimov P M, Lee L, and Dowling J P 2011 New J. Phys. 13 083026
[5] Oh C, Lee S Y, Nha H, and Jeong H 2017 Phys. Rev. A 96 062304
[6] Yu X D, Li W, Zhu S Y, and Zhang J 2016 Chin. Phys. B 25 020304
[7] Li H M, Xu X X, Yuan H C and Wang Z 2016 Chin. Phys. B 25 104203
[8] Xu L and Tan Q S 2018 Chin. Phys. B 27 014203
[9] Lee H, Kok P and Dowling J P 2002 J. Mod. Opt. 49 2325
[10] Dowling J P 1998 J. Mod. Opt. 45 2233
[11] Kuzmich A, Manning D, Mandel L, and Walmsley I A 1998 J. Mod. Opt. 45 2233
[12] Campos R A, Gerry C C and Benmoussa A 2003 Phys. Rev. A 68 023810
[13] Birrittella R, Mimih J, and Gerry C C 2012 Phys. Rev. A 86 063828
[14] Pezzé L and Smerzi A 2013 Phys. Rev. Lett. 110 163604
[15] Wang S, Wang Y T, Zhai L J and Zhang L J 2018 J. Opt. Soc. Am. B 35 1046
[16] Ou Z Y 1996 Phys. Rev. Lett. 77 2352
[17] Holland M J and Burnett K 1993 Phys. Rev. Lett. 71 1355
[18] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 Braunstein S L and Caves C M 2007 Phys. Rev. Lett 40 2799
[19] Rubin M A and Kaushik S 2007 Phys. Rev. A 75 053805
[20] Jiang K, Brignac C J, Weng Y, Kim M B, Lee H and Dowling J P 2012 Phys. Rev. A 86 013826
[21] Lang M D and Caves C M 2014 Phys. Rev. A 90 025802
[22] Gerry C C and Mimih J 2010 Contemp. Phys. 51 497
[23] Olivares S, Popovic M and Paris M G A 2016 Quantum Mean. Quantum Metrol. 3 38
[24] Seshadreesan K P, Kim S, Dowling J P and Lee H 2013 Phys. Rev. A 87 043833
[25] Lang M D and Caves C M 2013 Phys. Rev. Lett. 111 173601
[26] Kim M S, de Oliviera F A M and Knight P L 1989 Phys. Rev. A 40 2494
[27] Wenger J, Tualle-Bouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601
[28] Olivares S and Paris M G A 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S616
[29] Dell'Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 428 53
[30] Kim M S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 133001
[31] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[32] Ben-Aryeh Y 2012 J. Opt. Soc. Am. B 29 2754
[33] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßer S, Danzmann K and Schnabel R 2008 Phys. Rev. Lett. 100 033602
[34] Vahlbruch H, Mehmet M, Danzmann K and Schnabel R 2016 Phys. Rev. Lett. 117 110801
[35] Schnabel R 2017 Phys. Rep. 684 1
[36] Hall M J W 2000 Phys. Rev. A 62 012107
[37] Uys H and Meystre P 2007 Phys. Rev. A 76 013804
[38] Durkin G A and Dowling J P 2007 Phys. Rev. Lett. 99 070801
[39] Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 1835
[40] Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag, 2001), Appendix A
[41] Rainville E D 1960 Special Function (New York: MacMillan)
[1] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[2] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[3] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[4] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[5] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[6] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[7] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[8] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[9] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[10] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[11] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[12] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[13] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[14] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[15] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
No Suggested Reading articles found!