ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Quantum interferometry via a coherent state mixed with a squeezed number state |
Li-Li Hou(侯丽丽)1, Yong-Xing Sui(眭永兴)1, Shuai Wang(王帅)1, Xue-Fen Xu(许雪芬)2 |
1 School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China;
2 Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China |
|
|
Abstract We theoretically investigate the phase sensitivity with parity measurement on a Mach-Zehnder interferometer with a coherent state combined with a squeezed number state. Within a constraint on the total mean photon number, we find, via parity measurement, that the mixing of a coherent state and squeezed number state can give better phase sensitivity than mixing a coherent state and squeezed vacuum state when the phase shift deviates from the optimal phase φ=0. In addition, we show that the classical Fisher information for parity measurement saturates the quantum Fisher information when the phase shift approaches to zero. Thus, the quantum Cramér-Rao bound can be reached via the parity measurement in the case of φ=0.
|
Received: 13 December 2018
Revised: 15 January 2019
Accepted manuscript online:
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404040) and the Qing Lan Project of the Higher Educations of Jiangsu Province of China. |
Corresponding Authors:
Shuai Wang, Xue-Fen Xu
E-mail: ruifeng.wshslxy@jsut.edu.cn;xuxf@wxit.edu.cn
|
Cite this article:
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬) Quantum interferometry via a coherent state mixed with a squeezed number state 2019 Chin. Phys. B 28 044203
|
[1] |
Caves C M 1981 Phys. Rev. D 23 1693
|
[2] |
Pezzé L and Smerzi A 2008 Phys. Rev.Lett. 100 073601
|
[3] |
Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H, and Dowling J P 2010 Phys. Rev. Lett. 104 103602
|
[4] |
Seshadreesan K P, Anisimov P M, Lee L, and Dowling J P 2011 New J. Phys. 13 083026
|
[5] |
Oh C, Lee S Y, Nha H, and Jeong H 2017 Phys. Rev. A 96 062304
|
[6] |
Yu X D, Li W, Zhu S Y, and Zhang J 2016 Chin. Phys. B 25 020304
|
[7] |
Li H M, Xu X X, Yuan H C and Wang Z 2016 Chin. Phys. B 25 104203
|
[8] |
Xu L and Tan Q S 2018 Chin. Phys. B 27 014203
|
[9] |
Lee H, Kok P and Dowling J P 2002 J. Mod. Opt. 49 2325
|
[10] |
Dowling J P 1998 J. Mod. Opt. 45 2233
|
[11] |
Kuzmich A, Manning D, Mandel L, and Walmsley I A 1998 J. Mod. Opt. 45 2233
|
[12] |
Campos R A, Gerry C C and Benmoussa A 2003 Phys. Rev. A 68 023810
|
[13] |
Birrittella R, Mimih J, and Gerry C C 2012 Phys. Rev. A 86 063828
|
[14] |
Pezzé L and Smerzi A 2013 Phys. Rev. Lett. 110 163604
|
[15] |
Wang S, Wang Y T, Zhai L J and Zhang L J 2018 J. Opt. Soc. Am. B 35 1046
|
[16] |
Ou Z Y 1996 Phys. Rev. Lett. 77 2352
|
[17] |
Holland M J and Burnett K 1993 Phys. Rev. Lett. 71 1355
|
[18] |
Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 Braunstein S L and Caves C M 2007 Phys. Rev. Lett 40 2799
|
[19] |
Rubin M A and Kaushik S 2007 Phys. Rev. A 75 053805
|
[20] |
Jiang K, Brignac C J, Weng Y, Kim M B, Lee H and Dowling J P 2012 Phys. Rev. A 86 013826
|
[21] |
Lang M D and Caves C M 2014 Phys. Rev. A 90 025802
|
[22] |
Gerry C C and Mimih J 2010 Contemp. Phys. 51 497
|
[23] |
Olivares S, Popovic M and Paris M G A 2016 Quantum Mean. Quantum Metrol. 3 38
|
[24] |
Seshadreesan K P, Kim S, Dowling J P and Lee H 2013 Phys. Rev. A 87 043833
|
[25] |
Lang M D and Caves C M 2013 Phys. Rev. Lett. 111 173601
|
[26] |
Kim M S, de Oliviera F A M and Knight P L 1989 Phys. Rev. A 40 2494
|
[27] |
Wenger J, Tualle-Bouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601
|
[28] |
Olivares S and Paris M G A 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S616
|
[29] |
Dell'Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 428 53
|
[30] |
Kim M S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 133001
|
[31] |
Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
|
[32] |
Ben-Aryeh Y 2012 J. Opt. Soc. Am. B 29 2754
|
[33] |
Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßer S, Danzmann K and Schnabel R 2008 Phys. Rev. Lett. 100 033602
|
[34] |
Vahlbruch H, Mehmet M, Danzmann K and Schnabel R 2016 Phys. Rev. Lett. 117 110801
|
[35] |
Schnabel R 2017 Phys. Rep. 684 1
|
[36] |
Hall M J W 2000 Phys. Rev. A 62 012107
|
[37] |
Uys H and Meystre P 2007 Phys. Rev. A 76 013804
|
[38] |
Durkin G A and Dowling J P 2007 Phys. Rev. Lett. 99 070801
|
[39] |
Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 1835
|
[40] |
Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag, 2001), Appendix A
|
[41] |
Rainville E D 1960 Special Function (New York: MacMillan)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|