|
|
Quantum metrology with a non-Markovian qubit system |
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴) |
College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China |
|
|
Abstract The dynamics of the quantum Fisher information (QFI) of phase parameter estimation in a non-Markovian dissipative qubit system is investigated within the structure of single and double Lorentzian spectra. We use the time-convolutionless method with fourth-order perturbation expansion to obtain the general forms of QFI for the qubit system in terms of a non-Markovian master equation. We find that the phase parameter estimation can be enhanced in our model within both single and double Lorentzian spectra. What is more, the detuning and spectral width are two significant factors affecting the enhancement of parameter-estimation precision.
|
Received: 02 August 2018
Revised: 01 September 2018
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Projects supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030310354), the Science Foundation for Enhancing School with Innovation of Guangdong Ocean University (Grant Nos. GDOU2017052504 and GDOU2015050207), the Foundation of Excellent-Young-Backbone Teacher of Guangdong Ocean University (Grant No. HDYQ2017005), and the Fund of University Student Innovation and Entrepreneurship Team of Guangdong Ocean University (Grant No. CCTD201823). |
Corresponding Authors:
Wen-Qing Shi, Guo-Bao Xu
E-mail: swqafj@163.com;xuguobao@126.com
|
Cite this article:
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴) Quantum metrology with a non-Markovian qubit system 2018 Chin. Phys. B 27 120301
|
[1] |
Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
|
[2] |
Giovanetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
|
[3] |
Wineland D J, Bollinger J J, Itano W M and Heinzen D J 1994 Phys. Rev. A 50 67
|
[4] |
Dowling J P 1998 Phys. Rev. A 57 4736
|
[5] |
Giovannetti V, Lloyd S and Macone L 2004 Science 306 1330
|
[6] |
Andersen U L 2013 Nat. Photon. 8 589
|
[7] |
Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2000 Nat. Phys. 4 810
|
[8] |
Wang M B, Zhao D F, Zhang G Y and Zhao K F 2017 Chin. Phys. B 26 100701
|
[9] |
Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 4649
|
[10] |
Zhang J, Long G L, Deng Z, Liu W Z and Lu Z H 2004 Phys. Rev. A 70 062322
|
[11] |
Wang H F and Zhang S 2012 Chin. Phys. B 21 100309
|
[12] |
Helstrom C W 1976 Quantum detection and estimation theory (New York: Academic Press)
|
[13] |
Zheng M K and You L 2018 Acta Phys. Sin 62 189204 (in Chinese)
|
[14] |
Xu Lan and Tan Q S 2018 Chin. Phys. B 27 014203
|
[15] |
Feng X T, Yuan C H, Chen L Q, Chen J F, Zhang K Y and Zhang W P 2018 Acta Phys. Sin 67 164204 (in Chinese)
|
[16] |
Wu Y L, Li R, Rui Y, Jiang H F and Wu H B 2018 Acta Phys. Sin 67 163201 (in Chinese)
|
[17] |
Zhang L J and Xiao M 2013 Chin. Phys. B 22 110310
|
[18] |
Lu X M, Sun Z, Wang X G, Luo S L and Oh C H 2013 Phys. Rev. A 87 050302
|
[19] |
Zhong W, Liu J, Ma J and Wang X G 2014 Chin. Phys. B 23 060302
|
[20] |
Yao Y, Xiao X, Ge Li, Wang X G and Sun C P 2014 Phys. Rev. A 89 042336
|
[21] |
Liu W F, Ma J and Wang X G 2013 J. Phys. A: Math. Theor. 46 045302
|
[22] |
Tan Q S, Huang Y X, Yin X L, Kuang L M and Wang X G 2013 Phys. Rev. A 87 032102
|
[23] |
Li N and Luo S L 2013 Phys. Rev. A 88 014301
|
[24] |
Alipour S and Rezakhani A T 2015 Phys. Rev. A 91 042104
|
[25] |
Zhang J 2014 Phys. Rev. A 89 032128
|
[26] |
Zheng Q, Yao Y and Xu X W 2015 Commun. Theor. Phys. 63 279
|
[27] |
Huang J, Guo Y N and Xie Q 2016 Chin. Phys. B 25 020303
|
[28] |
Stefano M 2007 Phys. Rev. A 75 012330
|
[29] |
Wootters W K 1981 Phys. Rev. D 23 357
|
[30] |
Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
|
[31] |
Berrada K 2013 Phys. Rev. A 88 035806
|
[32] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Informatin (Cambridge: Cambridge University Press)
|
[33] |
Sun Z, Ma J, Lu X M and Wang X G 2011 Phys. Rev. A 84 022302
|
[34] |
Breue H P and Petruccione F 2003 The theory of open quantum systems (Cambridge: Oxford University Press)
|
[35] |
Huang J, Fang M F and Liu X 2012 Chin. Phys. B 21 014205
|
[36] |
Garraway B M 1997 Phys. Rev. A 55 6
|
[37] |
Zhang Y J, Man Z X, Xia Y J and Guo G C 2010 Eur. Phys. J. D 58 397
|
[38] |
Nabiev R F, Yeh P and Sachez-Mondragon J J 1993 Phys. Rev. A 47 3380
|
[39] |
Lewenstein M, Zakrzewski J and Mossberg T W 1988 Phys. Rev. A 38 808
|
[40] |
Li Y and Guo H e-print arXiv: quant ph/09090375
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|