Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 094204    DOI: 10.1088/1674-1056/26/9/094204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy

Jiandong Zhang(张建东)1, Zijing Zhang(张子静)1, Longzhu Cen(岑龙柱)1, Shuo Li(李硕)1, Yuan Zhao(赵远)1, Feng Wang(王峰)2
1 Harbin Institute of Technology, Harbin 150001, China;
2 Tianjin Jinhang Institute of Technology, Tianjin 300192, China
Abstract  Interference metrology is a method for achieving high precision detection by phase estimation. The phase sensitivity of a traditional interferometer is subject to the standard quantum limit, while its resolution is constrained by the Rayleigh diffraction limit. The resolution and sensitivity of phase measurement can be enhanced by using quantum metrology. We propose a quantum interference metrology scheme using the entangled squeezed vacuum state, which is obtained using the magic beam splitter, expressed as |ψ > = (|ξ>|0 > + ≤ |0 > ≤|ξ>)/√2+2/coshr, such as the N00N state. We derive the phase sensitivity and the resolution of the system with Z detection, project detection, and parity detection. By simulation and analysis, we determine that parity detection is an optimal detection method, which can break through the Rayleigh diffraction limit and the standard quantum limit.
Keywords:  entangled squeezed vacuum state      quantum metrology      parity detection  
Received:  16 March 2017      Revised:  02 May 2017      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
Corresponding Authors:  Zijing Zhang, Yuan Zhao     E-mail:  zhangzijing@hit.edu.cn;zhaoyuan@hit.edu.cn

Cite this article: 

Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰) Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy 2017 Chin. Phys. B 26 094204

[1] Caves C M 1982 Phys. Rev. D 26 1817
[2] Shapiro J H and Lloyd S 2009 New J. Phys. 11 063045.
[3] Cohen L, Istrati D, Dovrat L and Eisenberg H S 2014 Opt. Express 22 11945
[4] Lee H, Kok P and Dowling J P 2002 J. Mod. Opt. 49 2325
[5] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[6] Pooser R C and Pfister O 2004 Phys. Rev. A 69 043616
[7] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601
[8] Xu X X 2015 Phys. Rev. A 92 012318
[9] Gerry C C and Mimih J 2010 Contemp. Phys. 51 497
[10] Smith J F 2010 Proceedings of SPIE, April 13, 2009, Orlando, United States, p. 73420A
[11] Dutton Z, Shapiro J H and Guha S 2010 J. Opt. Soc. Am. B 27 A63
[12] Anisimov P M, Raterman G M and Chiruvelli A 2010 Phys. Rev. Lett. 104 103602
[13] Dowling J P 2008 Contemp. Phys. 49 125
[14] Zhang Y M, Li X W and Jin G R 2013 Chin. Phys. B 22 114206
[15] Escher B M and de Matos Filho R L 2011 Nat. Phys. 7 406
[16] Escher B M, de Matos Filho R L and Davidovich L 2011 Braz. J. Phys. 41 229
[17] Li M, Zhang Y S and Guo G C 2013 Chin. Phys. B 22 30310
[18] Helstrom C W 1969 J. Stat. Phys. 1 231
[19] Boto A N, Kok P and Abrams D S 2000 Phys. Rev. Lett. 85 2733
[20] Gao Y, Anisimov P M and Wildfeuer C F 2010 J. Opt. Soc. Am. B 27 A170
[21] Gerry C C 2000 Phys. Rev. A 61 043811
[22] Seshadreesan K P, Anisimov P M and Lee H P 2011 New J. Phys. 13 083026
[23] Knysh S, Smelyanskiy V N and Durkin G A 2011 Phys. Rev. A 83 021804
[24] Feng X M, Jin G R and Yang W 2014 Phys. Rev. A 90 013807
[25] Chiruvelli A and Lee H 2011 J. Mod. Opt. 58 945
[26] Vahlbruch H, Mehmet M and Chelkowski S 2008 Phys. Rev. Lett. 100 033602
[1] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[2] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[3] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[4] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[5] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[6] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[7] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[8] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[9] Super-sensitive phase estimation with coherent boosted light using parity measurements
Lan Xu(许兰), Qing-Shou Tan(谭庆收). Chin. Phys. B, 2018, 27(1): 014203.
[10] Phase sensitivity of two nonlinear interferometers with inputting entangled coherent states
Chao-Ping Wei(魏朝平), Xiao-Yu Hu(胡小玉), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2016, 25(4): 040601.
[11] Towards quantum-enhanced precision measurements:Promise and challenges
Zhang Li-Jian (张利剑), Xiao Min (肖敏). Chin. Phys. B, 2013, 22(11): 110310.
No Suggested Reading articles found!