Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094217    DOI: 10.1088/1674-1056/ab38a9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum optical interferometry via general photon-subtracted two-mode squeezed states

Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅)
School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
Abstract  

We investigate the sensitivity of phase estimation in a Mach-Zehnder interferometer with photon-subtracted two-mode squeezed vacuum states. Our results show that, for given initial squeezing parameter, both symmetric and asymmetric photon subtractions can further improve the quantum Cramér-Rao bound (i.e., the ultimate phase sensitivity), especially for single-mode photon subtraction. On the other hand, the quantum Cramér-Rao bound can be reached by parity detection for symmetric photon-subtracted two-mode squeezed vacuum states at particular values of the phase shift, but it is not valid for asymmetric photon-subtracted two-mode squeezed vacuum states. In addition, compared with the two-mode squeezed vacuum state, the phase sensitivity via parity detection with asymmetric photon-subtracted two-mode squeezed vacuum states will be getting worse. Thus, parity detection may not always be the optimal detection scheme for nonclassical states of light when they are considered as the interferometer states.

Keywords:  quantum optics      phase sensitivity      quantum metrology  
Received:  18 May 2019      Revised:  29 June 2019      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11404040) and the Qing Lan Project of the Higher Educations of Jiangsu Province of China.

Corresponding Authors:  Shuai Wang     E-mail:  wshslxy@jsut.edu.cn

Cite this article: 

Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅) Quantum optical interferometry via general photon-subtracted two-mode squeezed states 2019 Chin. Phys. B 28 094217

[39] Seshadreesan K P, Kim S, Dowling J P and Lee H 2013 Phys. Rev. A 87 043833
[1] Caves C M 1981 Phys. Rev. D 23 1693
[40] Cohen L, Istrati D, Dovrat L and Eisenber H S 2014 Opt. Express 22 11945
[2] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[41] Fan H Y and Ruan T N 1983 Commun. Theor. Phys. 2 1563
[3] Ou Z Y 1996 Phys. Rev. Lett. 77 2352
[42] Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
[4] Holland M J and Burnett K 1993 Phys. Rev. Lett. 71 1355
[43] Eberle T, Händchen V and Schnabel R 2013 Opt. Express 21 11546
[5] Gerry C C and Mimih J 2010 Contemp. Phys. 51 497
[44] Stephen M B, Gergely F, Claire R G and Fiona C S 2018 Phys. Rev. A 98 013809
[6] Campos R A, Gerry C C and Benmoussa A 2003 Phys. Rev. A 68 023810
[45] Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin:Springer-Verlag, 2001), Appendix A
[7] Dowling J P 2008 Contemp. Phys. 49 125
[8] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601
[9] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601
[10] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[11] Seshadreesan K P, Anisimov P M, Lee L and Dowling J P 2011 New J. Phys. 13 083026
[12] Zhang Y M, Li X W and Jin G R 2013 Chin. Phys. B 22 114206
[13] Sun H X, Liu K, Zhang J X and Gao J R 2015 Acta Phys. Sin. 64 234210(in Chinese)
[14] Yu X D, Li W, Zhu S Y and Zhang J 2016 Chin. Phys. B 25 020304
[15] Huang Z X, Motes K R, Anisimov P M, Dowling J P and Berry D W 2017 Phys. Rev. A 95 053837
[16] Wang S, Wu S C and Sui Y X 2018 Journal of Liaocheng University (Natural Science Eidtion) 31 77(in Chinese)
[17] Dell' Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 428 53
[18] Kim M S 2008 J. Phys. B:At. Mol. Opt. Phys. 41 133001
[19] Wang S, Hou L L, Chen X F and Xu X F 2015 Phys. Rev. A 91 063832
[20] Liao Q, Guo Y, Huang D, Huang P and Zeng G H 2018 New. J. Phys. 20 023015
[21] Guo Y, Ye W, Zhong H and Liao Q 2019 Phys. Rev. A 99 032327
[22] Carranza R and Gerry C C 2012 J. Opt. Soc. Am. B 29 2581
[23] Birrittella R and Gerry C C 2014 J. Opt. Soc. Am. B 31 586
[24] Tan Q S, Liao J Q, Wang X G and Nori F 2014 Phys. Rev. A 89 053822
[25] Gong Q K, Hu X L, Li D, Yuan C H, Ou Z Y and Zhang W 2017 Phys. Rev. A 96 033809
[26] Guo L L, Yu Y F and Zhang Z M 2018 Opt. Express 26 29099
[27] Ouyang Y, Wang S and Zhang L 2016 J. Opt. Soc. Am. B 33 1373
[28] Wang S, Xu X X, Xu Y J and Zhang L J 2019 Opt. Communn. 444 102
[29] León-Montiel R de J, Magaña-Loaiza O S, Perez-Leija A, U'Ren A, Busch K, Lita A E, Nam S W, Gerrits T and Mirin R R 2018 Frontiers in Optics/Laser Science LM1B.6
[30] Magaña-Loaiza O S, León-Montiel R de J, Perez-Leija A, U'Ren A B, You C, Busch K, Lita A E, Nam S W, Mirin R R and Gerrits T 2019 axXiv:1901.00122
[31] Harder G, Bartley T J, Lita A E, Nam S W, Gerrits T and Silberhorn C 2016 Phys. Rev. Lett. 116 143601
[32] Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
[33] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[34] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[35] Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601
[36] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[37] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York:Academic Press)
[38] Ben-Aryeh Y 2012 J. Opt. Soc. Am. B 29 2754
[39] Seshadreesan K P, Kim S, Dowling J P and Lee H 2013 Phys. Rev. A 87 043833
[40] Cohen L, Istrati D, Dovrat L and Eisenber H S 2014 Opt. Express 22 11945
[41] Fan H Y and Ruan T N 1983 Commun. Theor. Phys. 2 1563
[42] Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
[43] Eberle T, Händchen V and Schnabel R 2013 Opt. Express 21 11546
[44] Stephen M B, Gergely F, Claire R G and Fiona C S 2018 Phys. Rev. A 98 013809
[45] Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin:Springer-Verlag, 2001), Appendix A
[1] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[2] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[3] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[4] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[5] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[6] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[7] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[8] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[9] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[10] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[11] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[12] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[13] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[14] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[15] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
No Suggested Reading articles found!