Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 014203    DOI: 10.1088/1674-1056/27/1/014203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Super-sensitive phase estimation with coherent boosted light using parity measurements

Lan Xu(许兰)1,2,3, Qing-Shou Tan(谭庆收)1
1 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China;
2 School of Mathematics and Computational Sciences, Hunan First Normal University, Changsha 410205, China;
3 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  

We consider a passive and active hybrid interferometer for phase estimation, which can reach the sub-shot-noise limit in phase sensitivity with only the cheapest coherent sources. This scheme is formed by adding an optical parametric amplifier before a Mach-Zehnder interferometer. It is shown that our hybrid protocol can obtain a better quantum Cramer-Rao bound than the pure active (e.g., SU(1,1)) interferometer, and this precision can be reached by implementing the parity measurements. Furthermore, we also draw a detailed comparison between our scheme and the scheme suggested by Caves[Phys. Rev. D 23 1693 (1981)], and it is found that the optimal phase sensitivity gain obtained in our scheme is always larger than that in Caves' scheme.

Keywords:  phase estimation      quantum metrology  
Received:  08 August 2017      Revised:  11 September 2017      Accepted manuscript online: 
PACS:  42.50.St (Nonclassical interferometry, subwavelength lithography)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11665010), the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, China (Grant No. QSQC1414), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 17B055).

Corresponding Authors:  Qing-Shou Tan     E-mail:  qingshoutan@163.com

Cite this article: 

Lan Xu(许兰), Qing-Shou Tan(谭庆收) Super-sensitive phase estimation with coherent boosted light using parity measurements 2018 Chin. Phys. B 27 014203

[1] Caves C M 1981 Phys. Rev. D 23 1693
[2] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[3] Sanders B C, Milburn G J and Zhang Z 1997 J. Mod. Opt. 44 1309
[4] Plick W N, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014
[5] Marino A M, Corzo Trejo N V and Lett P D 2012 Phys. Rev. A 86 023844
[6] Holland M J and Burnett K 1993 Phys. Rev. Lett. 71 1355
[7] Dorner U, Demkowicz-Dobrzanski R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. Lett. 102 040403
[8] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[9] Sanders B C and Milburn G J 1995 Phys. Rev. Lett. 75 2944
[10] Ma J, Wang X, Sun C P and Nori F 2011 Phys. Rep. 509 89
[11] Humphreys P C, Barbieri M, Datta A and Walmsley I A 2013 Phys. Rev. Lett. 111 070403
[12] Pezzé L and Smerzi A 2013 Phys. Rev. Lett. 110 163604
[13] Dowling J P 2008 Contemp. Phys. 49 125
[14] Lvovsky A I, Sanders B C and Tittel W 2009 Nat. Photon. 3 706
[15] Escher B M, de Matos Filho R L and Davidovich L 2011 Nat. Phys. 7 406
[16] Hudelist F, Kong J, Liu C, Jing J, Ou Z Y and Zhang W P 2014 Nat. Commun. 5 3049
[17] Yue J D, Zhang Y R and Fan H 2014 Sci. Rep. 4 5933
[18] Tan Q S, Liao J Q, Wang X and N Franco 2014 Phys. Rev. A 89 053822
[19] Liu G Q, Zhang Y R, Chang Y C, Yue J Do, Fan H and Pan X Y 2015 Nat. Commun. 6 6726
[20] Wang Y T, Tang J S, Hu G, Wang J, Yu S, Zhou Z Q, Cheng Z D, Xu J S, Fang S Z, Wu Q L, Li C F and Guo G C 2016 Phys. Rev. Lett. 117 230801
[21] Wei C P, Hu X Y, Yu Y F and Zhang Z M 2016 Chin. Phys. B 25 040601
[22] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601
[23] Jarzyna M and Demkowicz-Dobrzański R 2012 Phys. Rev. A 85 011801
[24] Anisimov P M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[25] Plick W N, Anisimov P M, Dowling J P, Lee H and Agarwal G S 2010 New J. Phys. 12 113025
[26] Cramer H 1946 Mathematical Methods of Statistics (Princeton: Princeton University) p. 500
[27] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) p. 20
[28] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) p. 110
[29] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[30] Royer A 1977 Phys. Rev. A 15 449
[31] Gerry C C 2000 Phys. Rev. A 61 043811
[32] Gerry C C and Mimih J 2010 Contemp. Phys. 51 497
[33] Gerry C C and Mimih J 2010 Phys. Rev. A 82 013831
[34] Chiruvelli A and Lee H 2011 J. Mod. Opt. 58 945
[35] Seshadreesan K P, Anisimov P M, Lee H and Dowling J P 2011 New J. Phys. 13 083026
[36] Seshadreesan K P, Kim S, Dowling J P and Lee H 2013 Phys. Rev. A 87 043833
[37] Martini F D, Sciarrino F and Vitelli C 2008 Phys. Rev. Lett. 100 253601
[1] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[2] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[3] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[4] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[5] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[6] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[7] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[8] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[9] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
[10] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[11] Phase sensitivity of two nonlinear interferometers with inputting entangled coherent states
Chao-Ping Wei(魏朝平), Xiao-Yu Hu(胡小玉), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2016, 25(4): 040601.
[12] Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal
He Zhi (贺志), Yao Chun-Mei (姚春梅). Chin. Phys. B, 2014, 23(11): 110601.
[13] Towards quantum-enhanced precision measurements:Promise and challenges
Zhang Li-Jian (张利剑), Xiao Min (肖敏). Chin. Phys. B, 2013, 22(11): 110310.
[14] Quantum metrology
Xiang Guo-Yong (项国勇), Guo Guang-Can (郭光灿). Chin. Phys. B, 2013, 22(11): 110601.
No Suggested Reading articles found!