Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090304    DOI: 10.1088/1674-1056/ac0bae
GENERAL Prev   Next  

Quantum metrology with coherent superposition of two different coded channels

Dong Xie(谢东)1,†, Chunling Xu(徐春玲)1, and Anmin Wang(王安民)2
1 College of Science, Guilin University of Aerospace Technology, Guilin 541004, China;
2 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We investigate the advantage of coherent superposition of two different coded channels in quantum metrology. In a continuous variable system, we show that the Heisenberg limit 1/N can be beaten by the coherent superposition without the help of indefinite causal order. And in parameter estimation, we demonstrate that the strategy with the coherent superposition can perform better than the strategy with quantum switch which can generate indefinite causal order. We analytically obtain the general form of estimation precision in terms of the quantum Fisher information and further prove that the nonlinear Hamiltonian can improve the estimation precision and make the measurement uncertainty scale as 1/Nm for m≥2. Our results can help to construct a high-precision measurement equipment, which can be applied to the detection of coupling strength and the test of time dilation and the modification of the canonical commutation relation.
Keywords:  quantum metrology      quantum switch      quantum Fisher information      coherent superposition  
Received:  14 April 2021      Revised:  23 May 2021      Accepted manuscript online:  16 June 2021
PACS:  03.67.-a (Quantum information)  
  06.20.-f (Metrology)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62001134), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2020GXNSFAA159047), and the National Key Research and Development Program of China (Grant No. 2018YFB1601402-2).
Corresponding Authors:  Dong Xie     E-mail:  xiedong@mail.ustc.edu.cn

Cite this article: 

Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民) Quantum metrology with coherent superposition of two different coded channels 2021 Chin. Phys. B 30 090304

[1] Giovanetti V, Lloyd S and Maccone L 2004 Science 306 1330
[2] Giovanetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[3] Paris M G A 2009 Int. J. Quantum. Inf. 7 125
[4] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A and Bowen W P 2013 Nat. Photon. 7 229
[5] Slussarenko S, Weston M M, Chrzanowski H M, Shalm L K, Verma V B, Nam S W and Pryde G J 2017 Nat. Photon. 11 700
[6] Xie D, Sun F X and Xu C L 2020 Phys. Rev. A 101 063844
[7] Xu L and Tan Q S 2018 Chin. Phys. B 27 014203
[8] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[9] Zhang L J and Xiao M 2013 Chin. Phys. B 22 110310
[10] Giovannetti V and Maccone L 2012 Phys. Rev. Lett. 108 210404
[11] Chiribella G 2012 Phys. Rev. A 86 040301
[12] Araújo M, Costa F and Brukner Č 2014 Phys. Rev. Lett. 113 250402
[13] Procopio L M, Moqanaki A, Araújo M, Costa F, Calafell I A, Dowd E G, Hamel D R, Rozema L A, Brukner Č and Walther P 2015 Nat. Commun. 6 7913
[14] Rubino G, Rozema L A, Feix A, Araújo M, Zeuner J M, Procopio L M, Brukner Č and Walther P 2017 Sci. Adv. 3 e1602589
[15] Guo Y, Hu X M, Hou Z B, Cao H, Cui J M, Liu B H, Huang Y F, Li C F, Guo G C and Chiribella G 2020 Phys. Rev. Lett. 124 030502
[16] Mukhopadhyay C, Gupta M K and Pati A K 2018 arXiv: 1812. 07508
[17] Frey M 2019 Quantum Inf. Process. 18 96
[18] Zhao X, Yang Y and Chiribella G 2020 Phys. Rev. Lett. 124 190503
[19] Abbott A A, Wechs J, Horsman D, Mhalla M and Branciard C 2020 Quantum 4 333
[20] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic)
[21] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North Holland)
[22] Cramér H 1999 Mathematical Methods of Statistics (Princeton: Princeton University Press)
[23] Rao C R 1992 Breakthroughs in Statistics (New York: Springer)
[24] Ibarcq P C, Eickbusch A, Touzard S, Geller E Z, Frattini N, Sivak V, Reinhold P, Puri S, Shankar S and Schoelkopfetal R 2020 Nature 584 368
[25] Flühmann C, Negnevitsky V, Marinelli M and Home J P 2018 Phys. Rev. X 8 021001
[26] Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E and Kim K 2018 Phys. Rev. X 8 021027
[27] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[28] Sanavio C, Bernád J Z and Xuereb A 2020 Phys. Rev. A 102 013508
[29] Park K, Marek P and Filip R 2014 Phys. Rev. A 90 013804
[30] Wiseman H and Milburn G 2010 quantum measurement and control (New York: Cambridge University Press)
[31] Girvin S M, Devoret M H and Schoelkopf R J 2009 Phys. Scr. 2009 014012
[32] You J Q and Nori F 2011 Nature 474 589
[33] Lépez Vázquez P C 2018 Phys. Rev. A 98 042128
[34] Park K, Marek P and Filip R 2014 Phys. Rev. A 90 013804
[35] Ramakrishnan S, Gulak Y and Benaroya H 2008 Phys. Rev. B 78 174304
[36] Pikovski I, Zych M, Costa F and Brukner Č 2015 Nat. Phys. 11 668
[37] Paige A J, Plato A D K and Kim M S 2020 Phys. Rev. Lett. 124 160602
[38] Kempf A, Mangano G and Mann R B 1995 Phys. Rev. D 52 1108
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[3] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[4] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[5] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[6] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[7] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[8] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[9] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[10] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[11] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[12] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[13] Super-sensitive phase estimation with coherent boosted light using parity measurements
Lan Xu(许兰), Qing-Shou Tan(谭庆收). Chin. Phys. B, 2018, 27(1): 014203.
[14] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
[15] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
No Suggested Reading articles found!