|
|
Quantum metrology with coherent superposition of two different coded channels |
Dong Xie(谢东)1,†, Chunling Xu(徐春玲)1, and Anmin Wang(王安民)2 |
1 College of Science, Guilin University of Aerospace Technology, Guilin 541004, China; 2 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We investigate the advantage of coherent superposition of two different coded channels in quantum metrology. In a continuous variable system, we show that the Heisenberg limit 1/N can be beaten by the coherent superposition without the help of indefinite causal order. And in parameter estimation, we demonstrate that the strategy with the coherent superposition can perform better than the strategy with quantum switch which can generate indefinite causal order. We analytically obtain the general form of estimation precision in terms of the quantum Fisher information and further prove that the nonlinear Hamiltonian can improve the estimation precision and make the measurement uncertainty scale as 1/Nm for m≥2. Our results can help to construct a high-precision measurement equipment, which can be applied to the detection of coupling strength and the test of time dilation and the modification of the canonical commutation relation.
|
Received: 14 April 2021
Revised: 23 May 2021
Accepted manuscript online: 16 June 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
06.20.-f
|
(Metrology)
|
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62001134), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2020GXNSFAA159047), and the National Key Research and Development Program of China (Grant No. 2018YFB1601402-2). |
Corresponding Authors:
Dong Xie
E-mail: xiedong@mail.ustc.edu.cn
|
Cite this article:
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民) Quantum metrology with coherent superposition of two different coded channels 2021 Chin. Phys. B 30 090304
|
[1] Giovanetti V, Lloyd S and Maccone L 2004 Science 306 1330 [2] Giovanetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401 [3] Paris M G A 2009 Int. J. Quantum. Inf. 7 125 [4] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A and Bowen W P 2013 Nat. Photon. 7 229 [5] Slussarenko S, Weston M M, Chrzanowski H M, Shalm L K, Verma V B, Nam S W and Pryde G J 2017 Nat. Photon. 11 700 [6] Xie D, Sun F X and Xu C L 2020 Phys. Rev. A 101 063844 [7] Xu L and Tan Q S 2018 Chin. Phys. B 27 014203 [8] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601 [9] Zhang L J and Xiao M 2013 Chin. Phys. B 22 110310 [10] Giovannetti V and Maccone L 2012 Phys. Rev. Lett. 108 210404 [11] Chiribella G 2012 Phys. Rev. A 86 040301 [12] Araújo M, Costa F and Brukner Č 2014 Phys. Rev. Lett. 113 250402 [13] Procopio L M, Moqanaki A, Araújo M, Costa F, Calafell I A, Dowd E G, Hamel D R, Rozema L A, Brukner Č and Walther P 2015 Nat. Commun. 6 7913 [14] Rubino G, Rozema L A, Feix A, Araújo M, Zeuner J M, Procopio L M, Brukner Č and Walther P 2017 Sci. Adv. 3 e1602589 [15] Guo Y, Hu X M, Hou Z B, Cao H, Cui J M, Liu B H, Huang Y F, Li C F, Guo G C and Chiribella G 2020 Phys. Rev. Lett. 124 030502 [16] Mukhopadhyay C, Gupta M K and Pati A K 2018 arXiv: 1812. 07508 [17] Frey M 2019 Quantum Inf. Process. 18 96 [18] Zhao X, Yang Y and Chiribella G 2020 Phys. Rev. Lett. 124 190503 [19] Abbott A A, Wechs J, Horsman D, Mhalla M and Branciard C 2020 Quantum 4 333 [20] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic) [21] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North Holland) [22] Cramér H 1999 Mathematical Methods of Statistics (Princeton: Princeton University Press) [23] Rao C R 1992 Breakthroughs in Statistics (New York: Springer) [24] Ibarcq P C, Eickbusch A, Touzard S, Geller E Z, Frattini N, Sivak V, Reinhold P, Puri S, Shankar S and Schoelkopfetal R 2020 Nature 584 368 [25] Flühmann C, Negnevitsky V, Marinelli M and Home J P 2018 Phys. Rev. X 8 021001 [26] Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E and Kim K 2018 Phys. Rev. X 8 021027 [27] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [28] Sanavio C, Bernád J Z and Xuereb A 2020 Phys. Rev. A 102 013508 [29] Park K, Marek P and Filip R 2014 Phys. Rev. A 90 013804 [30] Wiseman H and Milburn G 2010 quantum measurement and control (New York: Cambridge University Press) [31] Girvin S M, Devoret M H and Schoelkopf R J 2009 Phys. Scr. 2009 014012 [32] You J Q and Nori F 2011 Nature 474 589 [33] Lépez Vázquez P C 2018 Phys. Rev. A 98 042128 [34] Park K, Marek P and Filip R 2014 Phys. Rev. A 90 013804 [35] Ramakrishnan S, Gulak Y and Benaroya H 2008 Phys. Rev. B 78 174304 [36] Pikovski I, Zych M, Costa F and Brukner Č 2015 Nat. Phys. 11 668 [37] Paige A J, Plato A D K and Kim M S 2020 Phys. Rev. Lett. 124 160602 [38] Kempf A, Mangano G and Mann R B 1995 Phys. Rev. D 52 1108 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|